0000000000084088

AUTHOR

Beatrice Cairo

0000-0003-3396-6883

An Empirical Mode Decomposition Approach to Assess the Strength of Heart Period-Systolic Arterial Pressure Variability Interactions.

This work proposes an empirical mode decomposition (EMD) method to assess the strength of the interactions between heart period (HP) and systolic arterial pressure (SAP) variability. EMD was exploited to decompose the original series (OR) into its first, and fastest, intrinsic mode function (IMF1) and the residual (RES) computed by subtracting the IMF1 from OR. EMD procedure was applied to both HP and SAP variability series. Then, the cross correlation function (CCF) was computed over OR, IMF1 and RES series derived from HP and SAP variability in 13 healthy subjects (age 27±8 yrs, 5 males) at rest in supine position (REST) and during head-up tilt (TILT). The first CCF maximum at negative ti…

research product

Dynamic cerebrovascular autoregulation in patients prone to postural syncope: Comparison of techniques assessing the autoregulation index from spontaneous variability series

Abstract Three approaches to the assessment of cerebrovascular autoregulation (CA) via the computation of the autoregulation index (ARI) from spontaneous variability of mean arterial pressure (MAP) and mean cerebral blood flow velocity (MCBFV) were applied: 1) a time domain method (TDM); 2) a nonparametric method (nonPM); 3) a parametric method (PM). Performances were tested over matched and surrogate unmatched pairs. Data were analyzed at supine resting (REST) and during the early phase of 60° head-up tilt (TILT) in 13 subjects with previous history of postural syncope (SYNC, age: 28 ± 9 yrs.; 5 males) and 13 control individuals (noSYNC, age: 27 ± 8 yrs.; 5 males). Analysis was completed b…

research product

Spectral decomposition of cerebrovascular and cardiovascular interactions in patients prone to postural syncope and healthy controls.

We present a framework for the linear parametric analysis of pairwise interactions in bivariate time series in the time and frequency domains, which allows the evaluation of total, causal and instantaneous interactions and connects time- and frequency-domain measures. The framework is applied to physiological time series to investigate the cerebrovascular regulation from the variability of mean cerebral blood flow velocity (CBFV) and mean arterial pressure (MAP), and the cardiovascular regulation from the variability of heart period (HP) and systolic arterial pressure (SAP). We analyze time series acquired at rest and during the early and late phase of head-up tilt in subjects developing or…

research product

Exploring metrics for the characterization of the cerebral autoregulation during head-up tilt and propofol general anesthesia

Techniques grounded on the simultaneous utilization of Tiecks' second order differential equations and spontaneous variability of mean arterial pressure (MAP) and mean cerebral blood flow velocity (MCBFV), recorded from middle cerebral arteries through a transcranial Doppler device, provide a characterization of cerebral autoregulation (CA) via the autoregulation index (ARI). These methods exploit two metrics for comparing the measured MCBFV series with the version predicted by Tiecks' model: normalized mean square prediction error (NMSPE) and normalized correlation rho. The aim of this study is to assess the two metrics for ARI computation in 13 healthy subjects (age: 27 & PLUSMN; 8 yr…

research product

Correlation between Baroreflex Sensitivity and Cerebral Autoregulation Index in Healthy Subjects

Despite the acknowledged interaction between baroreflex and cerebral autoregulation (CA), their functional relationship remains controversial. The study investigates this relationship in a healthy population undergoing an orthostatic challenge. Thirteen healthy subjects (age: 27pm 8 yrs; 5 males) underwent electrocardiogram, arterial pressure (AP) and cerebral blood flow velocity (CBFV) recordings at supine resting (REST) and during 60° head-up tilt (TILT). CA was assessed via the autoregulation index (ARI) from spontaneous variations of mean AP and mean CBFV. The cardiac control and baroreflex were evaluated via frequency domain and transfer function analyses applied to systolic AP and hea…

research product

Categorizing the Role of Respiration in Cardiovascular and Cerebrovascular Variability Interactions

Objective: Respiration disturbs cardiovascular and cerebrovascular controls but its role is not fully elucidated. Methods: Respiration can be classified as a confounder if its observation reduces the strength of the causal relationship from source to target. Respiration is a suppressor if the opposite situation holds. We prove that a confounding/suppression (C/S) test can be accomplished by evaluating the sign of net redundancy/synergy balance in the predictability framework based on multivariate autoregressive modelling. In addition, we suggest that, under the hypothesis of Gaussian processes, the C/S test can be given in the transfer entropy decomposition framework as well. Experimental p…

research product

Strength and Latency of the HP-SAP Closed Loop Variability Interactions in Subjects Prone to Develop Postural Syncope

The coupling and latency between heart period (HP) and systolic arterial pressure (SAP) variability can be investigated along the two arms of the HP-SAP closed loop, namely along the baroreflex feedback from SAP to HP, and along the feedforward pathway from HP to SAP. This study investigates the HP-SAP closed loop variability interactions through cross-correlation function (CCF). Coupling strength and delay between HP and SAP variability series were monitored in 13 subjects prone to develop orthostatic syncope (SYNC, 28±9 yrs, 5 males) and in 13 subjects with no history of postural syncope (noSYNC, age: 27±8 yrs, 5 males). Analysis was carried out at rest in supine position (REST) and durin…

research product