Responsible cognitive digital clones as decision-makers: A design science research study
This study uses a design science research methodology to develop and evaluate the Pi-Mind agent, an information technology artefact that acts as a responsible, resilient, ubiquitous cognitive clone – or a digital copy – and an autonomous representative of a human decision-maker. Pi-Mind agents can learn the decision-making capabilities of their “donors” in a specific training environment based on generative adversarial networks. A trained clone can be used by a decision-maker as an additional resource for one’s own cognitive enhancement, as an autonomous representative, or even as a replacement when appropriate. The assumption regarding this approach is as follows: when someone was forced t…
Taxonomy of generative adversarial networks for digital immunity of Industry 4.0 systems
Abstract Industry 4.0 systems are extensively using artificial intelligence (AI) to enable smartness, automation and flexibility within variety of processes. Due to the importance of the systems, they are potential targets for attackers trying to take control over the critical processes. Attackers use various vulnerabilities of such systems including specific vulnerabilities of AI components. It is important to make sure that inappropriate adversarial content will not break the security walls and will not harm the decision logic of critical systems. We believe that the corresponding security toolset must be organized as a trainable self-protection mechanism similar to immunity. We found cer…
From Deep Learning to Deep University: Cognitive Development of Intelligent Systems
Search is not only an instrument to find intended information. Ability to search is a basic cognitive skill helping people to explore the world. It is largely based on personal intuition and creativity. However, due to the emerged big data challenge, people require new forms of training to develop or improve this ability. Current developments within Cognitive Computing and Deep Learning enable artificial systems to learn and gain human-like cognitive abilities. This means that the skill how to search efficiently and creatively within huge data spaces becomes one of the most important ones for the cognitive systems aiming at autonomy. This skill cannot be pre-programmed, it requires learning…
Towards digital cognitive clones for the decision-makers: adversarial training experiments
Abstract There can be many reasons for anyone to make a digital copy (clone) of own decision-making behavior. This enables virtual presence of a professional decision-maker simultaneously in many places and processes of Industry 4.0. Such clone can be used as one’s responsible representative when the human is not available. Pi-Mind (“Patented Intelligence”) is a technology, which enables “cloning” cognitive skills of humans using adversarial machine learning. In this paper, we present a cyber-physical environment as an adversarial learning ecosystem for cloning image classification skills. The physical component of the environment is provided by the logistic laboratory with camera-surveilla…
Industry 4.0 Intelligence under Attack : From Cognitive Hack to Data Poisoning
Artificial intelligence is an unavoidable asset of Industry 4.0. Artificial actors participate in real-time decision-making and problem solving in various industrial processes, including planning, production, and management. Their efficiency, as well as intelligent and autonomous behavior is highly dependent on the ability to learn from examples, which creates new vulnerabilities exploited by security threats. Today's disruptive attacks of hackers go beyond system's infrastructures targeting not only hard-coded software or hardware, but foremost data and trained decision models, in order to approach system's intelligence and compromise its work. This paper intends to reveal security threats…
Hybrid Threats against Industry 4.0 : Adversarial Training of Resilience
Industry 4.0 and Smart Manufacturing are associated with the Cyber-Physical-Social Systems populated and controlled by the Collective Intelligence (human and artificial). They are an important component of Critical Infrastructure and they are essential for the functioning of a society and economy. Hybrid Threats nowadays target critical infrastructure and particularly vulnerabilities associated with both human and artificial intelligence. This article summarizes some latest studies of WARN: “Academic Response to Hybrid Threats” (the Erasmus+ project), which aim for the resilience (regarding hybrid threats) of various Industry 4.0 architectures and, especially, of the human and artificial de…
Patented intelligence: Cloning human decision models for Industry 4.0
Industry 4.0 is a trend related to smart factories, which are cyber-physical spaces populated and controlled by the collective intelligence for the autonomous and highly flexible manufacturing purposes. Artificial Intelligence (AI) embedded into various planning, production, and management processes in Industry 4.0 must take the initiative and responsibility for making necessary real-time decisions in many cases. In this paper, we suggest the Pi-Mind technology as a compromise between completely human-expert-driven decision-making and AI-driven decision-making. Pi-Mind enables capturing, cloning and patenting essential parameters of the decision models from a particular human expert making …