0000000000084828
AUTHOR
H T Duong
Atomic beam magnetic resonance apparatus for systematic measurement of hyperfine structure anomalies (Bohr-Weisskopf effect)
Abstract An atomic beam magnetic resonance (ABMR) apparatus has been constructed at Orsay, and has been installed at the CERN PS Booster ISOLDE mass separator facility for “on-line” work with radioactive isotopes in a program to measure hyperfine structure anomalies (the Bohr-Weisskopf effect) over long isotopic chains. The hfs anomalies result from the effect of the spatial distribution of the nuclear magnetization on the atomic hfs interaction. Constructional details of the system are described: emphasis is placed on the measurement of nuclear g-factors by a triple resonance, laser state selected, ABMR method. A precision better than 10−4 for gI values has been obtained in stable atomic b…
How Lasers Can Help Probe the Distribution of Nuclear Magnetism
Publisher Summary High-resolution atomic spectroscopy has played an important part in the study of nuclear electric and magnetic structure. Laser spectroscopy has been crucial for the measurement of isotope shifts, which reflect the variations of nuclear charge radii and shapes. High sensitivity and frequency resolution have allowed experiments to be carried out systematically over extensive ranges of stable and radioactive isotopes with lifetime as short as a few milliseconds. While the laser experiments also yield results for nuclear multipole moments, no measurements are obtained of the distribution of nuclear magnetization. Nuclear structure properties can be probed by penetrating elect…
Nuclear Magnetic Moment ofTl207
The magnetic moment 1.876(5)${\mathrm{\ensuremath{\mu}}}_{\mathit{N}}$ of 4.77-min $^{207}\mathrm{Tl}$, the only heavy nucleus with a doubly magic core plus a single ${s}_{\frac{1}{2}}$ particle or hole, was measured from the hfs by collinear fast-beam laser spectroscopy at ISOLDE (isotope separator at the CERN synchrotron). The result is of theoretical importance as a test case for core polarization since the nuclear structure is relatively simple and the orbital part of the magnetic moment, including strong pion-exchange contribution, is expected to be zero.
First observation of the blue optical lines of francium
We report here the first wave-length measurements in the second resonance doublet of francium, D1'(7s2S1/2-8p2P 1/2) and D2'(7s2S1/2-8p2P 3/2), carried out by collinear fast-beam laser spectroscopy. The transition wave numbers are D1' = 23112.9603(50) cm-1 and D2' = 23658.3058(40) cm-1, corresponding to a 8p fine-structure splitting of δW8p = 545.3454(70) cm-1. In addition the hyperfine structure in both lines and the isotope shift in the D2' line for the isotopes 212,213,220,221Fr have been measured. The results are discussed with special emphasis on the analysis of the atomic structure in the heaviest alkali element and compared with theoretical predictions, as well as the only earlier sp…
Hyperfine structure and isotope shift investigations in $^{202-222}$Rn for the study of nuclear structure beyond Z = 82
The hyperfine structure (hfs) and isotope shift (IS) in the isotopic chain of the radioactive element radon have been studied for the first time. The measurements were carried out by collinear fast-beam laser spectroscopy at the mass separator facility ISOLDE at CERN. The IS between 16 isotopes in the mass range 202≦A≦222 and the hfs of 7 odd-A isotopes were determined in the transitions 7s [3/2]2-7p [5/2]3 (745 nm) of Rn I. The nuclear spins and moments, as well as the observed inversion of the odd-even staggering for218–222Rn, can be associated with the effects of octupole instability around N=134.