0000000000084836

AUTHOR

Katrin Linker

Tristetraprolin Regulates the Expression of the Human Inducible Nitric-Oxide Synthase Gene

The expression of human inducible NO synthase (iNOS) is regulated both by transcriptional and post-transcriptional mechanisms. Stabilization of mRNAs often depends on activation of p38 mitogen-activated protein kinase (p38 MAPK). In human DLD-1 cells, inhibition of p38 MAPK by the compound 4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole (SB203580) or by overexpression of a dominant-negative p38 MAPKalpha protein resulted in a reduction of human iNOS mRNA and protein expression, whereas human iNOS promoter activity was not affected. An important RNA binding protein regulated by the p38 MAPK pathway and involved in the regulation of the stability of several mRNAs is tr…

research product

Involvement of KSRP in the post-transcriptional regulation of human iNOS expression–complex interplay of KSRP with TTP and HuR

We purified the KH-type splicing regulatory protein (KSRP) as a protein interacting with the 3'-untranslated region (3'-UTR) of the human inducible nitric oxide (iNOS) mRNA. Immunodepletion of KSRP enhanced iNOS 3'-UTR RNA stability in in vitro-degradation assays. In DLD-1 cells overexpressing KSRP cytokine-induced iNOS expression was markedly reduced. In accordance, downregulation of KSRP expression increases iNOS expression by stabilizing iNOS mRNA. Co-immunoprecipitations showed interaction of KSRP with the exosome and tristetraprolin (TTP). To analyze the role of KSRP binding to the 3'-UTR we studied iNOS expression in DLD-1 cells overexpressing a non-binding mutant of KSRP. In these ce…

research product

The polypyrimidine tract-binding protein (PTB) is involved in the post-transcriptional regulation of human inducible nitric oxide synthase expression.

Human inducible nitric oxide synthase (iNOS) expression is regulated by transcriptional and post-transcriptional mechanisms. We have recently shown that the multifunctional RNA-binding proteins KH-type splicing regulatory protein and tristetraprolin are critically involved in the post-transcriptional regulation of human iNOS expression. Several reports have shown that KH-type splicing regulatory protein colocalizes with the polypyrimidine tract-binding protein (PTB), and both RNA-binding proteins seem to interact with the same mRNAs. Therefore we analyzed the involvement of PTB in human iNOS expression. In human DLD-1 cells, cytokine incubation necessary to induce iNOS expression did not ch…

research product

Regulation of the expression of inducible nitric oxide synthase

The role of nitric oxide (NO) generated by the inducible isoform of nitric oxide synthase (iNOS) is very complex. Induction of iNOS expression and hence NO production has been described to have beneficial antiviral, antiparasital, microbicidal, immunomodulatory, and antitumoral effects. However, induced at the wrong place or at the wrong time, iNOS has detrimental consequences and seems to be involved in the pathophysiology of different human diseases. The pathways regulating iNOS expression seem to vary in different cells or different species. In general, activation of the transcription factors nuclear factor (NF)-kappaB and signal transducer and activator of transcription (STAT)-1alpha an…

research product

Similar Regulation of Human Inducible Nitric-oxide Synthase Expression by Different Isoforms of the RNA-binding Protein AUF1

The ARE/poly-(U) binding factor 1 (AUF1), a protein family consisting of four isoforms, is believed to mediate mRNA degradation by binding to AU-rich elements (ARE). However, evidence exists that individual AUF1 isoforms may stabilize ARE-containing mRNAs. The 3'-untranslated region of the human inducible nitric-oxide synthase (iNOS) contains five AREs, which promote RNA degradation. We have recently shown that the RNA-binding protein KSRP is critically involved in the decay of the iNOS mRNA. In this study we examined the effects of the individual AUF1 isoforms on iNOS expression. Overexpression of each AUF1 isoform reduces iNOS expression on mRNA and protein levels to the same extent by mo…

research product

Post-Transcriptional Regulation of Human Inducible Nitric-Oxide Synthase Expression by the Jun N-terminal Kinase

Human inducible nitric-oxide synthase (iNOS) expression is regulated both at transcriptional and post-transcriptional levels. In the present study, the effect of Jun N-terminal kinase (JNK) on human iNOS expression was investigated. In A549/8 human alveolar epithelial cells, both the inhibition of JNK by a pharmacological inhibitor anthra[1,9-cd]pyrazol-6(2H)-one1,9-pyrazoloanthrone (SP600125) and small interfering RNA (siRNA)-mediated down-regulation of JNK led to a reduction of iNOS mRNA and protein expression. iNOS promoter activity was not affected by these treatments. Hence, JNK seems to regulate iNOS expression through post-transcriptional mechanisms by stabilizing iNOS mRNA. Our labo…

research product