0000000000085123

AUTHOR

Teresa Signes

showing 2 related works from this author

A bilinear version of Orlicz–Pettis theorem

2008

Abstract Given three Banach spaces X, Y and Z and a bounded bilinear map B : X × Y → Z , a sequence x = ( x n ) n ⊆ X is called B -absolutely summable if ∑ n = 1 ∞ ‖ B ( x n , y ) ‖ Z is finite for any y ∈ Y . Connections of this space with l weak 1 ( X ) are presented. A sequence x = ( x n ) n ⊆ X is called B -unconditionally summable if ∑ n = 1 ∞ | 〈 B ( x n , y ) , z ∗ 〉 | is finite for any y ∈ Y and z ∗ ∈ Z ∗ and for any M ⊆ N there exists x M ∈ X for which ∑ n ∈ M 〈 B ( x n , y ) , z ∗ 〉 = 〈 B ( x M , y ) , z ∗ 〉 for all y ∈ Y and z ∗ ∈ Z ∗ . A bilinear version of Orlicz–Pettis theorem is given in this setting and some applications are presented.

SequenceApplied MathematicsMathematical analysisBanach spaceBilinear interpolationAbsolute and strong summabilitySpace (mathematics)Sequence spacesSequence spaceCombinatoricsBounded functionBanach sequence spacesAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Remarks on (Q, P, Y)-Summing Operators

2003

Abstract unavailable at this time... Mathematics Subject Classification (1991): 47B10. Key words: Summing operators; injective tensor product. Quaestiones Mathematicae 26(2003), 97-103

AlgebraPure mathematicsMathematics (miscellaneous)Tensor productMathematics Subject ClassificationKey (cryptography)Injective functionMathematicsQuaestiones Mathematicae
researchProduct