0000000000085999

AUTHOR

Timo Kairesalo

Distribution patterns of epiphytic reed-associated macroinvertebrate communities across European shallow lakes

So far, research on plant-associated macroinvertebrates, even if conducted on a large number of water bodies, has mostly focused on a relatively small area, permitting limited conclusions to be drawn regarding potentially broader geographic effects, including climate. Some recent studies have shown that the composition of epiphytic communities may differ considerably among climatic zones. To assess this phenomenon, we studied macroinvertebrates associated with the common reed Phragmites australis (Cav.) Trin. ex Steud in 46 shallow lakes using a common protocol. The lakes, located in nine countries, covered almost the entire European latitudinal range (from <48°N to 61°N) and captured much …

research product

Response of zooplankton to nutrient enrichment and fish in shallow lakes: a pan-European mesocosm experiment

1. Responses of zooplankton to nutrient enrichment and fish predation were studied in 1998 and 1999 by carrying out parallel mesocosm experiments in six lakes across Europe. 2. Zooplankton community structure, biomass and responses to nutrient and fish manipulation showed geographical and year-to-year differences. Fish had a greater influence than nutrients in regulating zooplankton biomass and especially the relative abundances of different functional groups of zooplankton. When fish reduced the biomass of large crustaceans, there was a complementary increase in the biomasses of smaller crustacean species and rotifers. 3. High abundance of submerged macrophytes provided refuge for zooplank…

research product

Responses of phytoplankton to fish predation and nutrient loading in shallow lakes: a pan-European mesocosm experiment

1. The impacts of nutrients (phosphorus and nitrogen) and planktivorous fish on phytoplankton composition and biomass were studied in six shallow, macrophyte-dominated lakes across Europe using mesocosm experiments. 2. Phytoplankton biomass was more influenced by nutrients than by densities of planktivorous fish. Nutrient addition resulted in increased algal biomass at all locations. In some experiments, a decrease was noted at the highest nutrient loadings, corresponding to added concentrations of 1 mg L1 P and 10 mg L1 N. 3. Chlorophyll a was a more precise parameter to quantify phytoplankton biomass than algal biovolume, with lower within-treatment variability. 4. Higher densities of pla…

research product