0000000000086299
AUTHOR
Thomas Gehrmann
Analytic Form of the Two-Loop Planar Five-Gluon All-Plus-Helicity Amplitude in QCD
Virtual two-loop corrections to scattering amplitudes are a key ingredient to precision physics at collider experiments. We compute the full set of planar master integrals relevant to five-point functions in massless QCD, and use these to derive an analytical expression for the two-loop five-gluon all-plus-helicity amplitude. After subtracting terms that are related to the universal infrared and ultraviolet pole structure, we obtain a remarkably simple and compact finite remainder function, consisting only of dilogarithms.
QCD corrections to static heavy-quark form factors
Interactions of heavy quarks, in particular of top quarks, with electroweak gauge bosons are expected to be very sensitive to new physics effects related to electroweak symmetry breaking. These interactions are described by the so-called static form factors, which include anomalous magnetic moments and the effective weak charges. We compute the second-order QCD corrections to these static form factors, which turn out to be sizeable and need to be taken into account in searches for new anomalous coupling effects.
Pentagon functions for massless planar scattering amplitudes
Loop amplitudes for massless five particle scattering processes contain Feynman integrals depending on the external momentum invariants: pentagon functions. We perform a detailed study of the analyticity properties and cut structure of these functions up to two loops in the planar case, where we classify and identify the minimal set of basis functions. They are computed from the canonical form of their differential equations and expressed in terms of generalized polylogarithms, or alternatively as one-dimensional integrals. We present analytical expressions and numerical evaluation routines for these pentagon functions, in all kinematical configurations relevant to five-particle scattering …
Polymer ester von sären des phosphors, 7. Polymerisation des 1-oxo-2,6,7-trioxa-1-phosphabicyclo[2.2.1]heptans
1-Oxo-2,6,7-trioxa-1-phosphabicyclo[2.2.1]heptane is transformed in situ (prepared from trimethyl phosphite and glycerol) at −78°C in the presence of a trace of water into a crosslinked polymer containing constitutional repeating units with 5- and 6-membered rings. The reaction with reagents containing hydroxyl groups (water, acetic acid, alcohol) leads to the degradation of the network with the formation of soluble fragments with Pn = 35–50. This reactivity and the possibility to obtain other derivatives from the fragments make this polymer a carrier for pharmacologically active polymers with the advantage of decomposing only into the innocuous components phosphoric acid and glycerol.
Analytic result for a two-loop five-particle amplitude
We compute the symbol of the full-color two-loop five-particle amplitude in $\mathcal{N}=4$ super Yang-Mills, including all non-planar subleading-color terms. The amplitude is written in terms of permutations of Parke-Taylor tree-level amplitudes and pure functions to all orders in the dimensional regularization parameter, in agreement with previous conjectures. The answer has the correct collinear limits and infrared factorization properties, allowing us to define a finite remainder function. We study the multi-Regge limit of the non-planar terms, analyze its subleading power corrections, and present analytically the leading logarithmic terms.
Analytic result for the nonplanar hexa-box integrals.
In this paper, we analytically compute all master integrals for one of the two non-planar integral families for five-particle massless scattering at two loops. We first derive an integral basis of 73 integrals with constant leading singularities. We then construct the system of differential equations satisfied by them, and find that it is in canonical form. The solution space is in agreement with a recent conjecture for the non-planar pentagon alphabet. We fix the boundary constants of the differential equations by exploiting constraints from the absence of unphysical singularities. The solution of the differential equations in the Euclidean region is expressed in terms of iterated integral…
ZZ production at hadron colliders in NNLO QCD
We report on the first calculation of next-to-next-to-leading order (NNLO) QCD corrections to the inclusive production of ZZ pairs at hadron colliders. Numerical results are presented for pp collisions with centre-of-mass energy ($\sqrt{s}$) ranging from 7 to 14 TeV. The NNLO corrections increase the NLO result by an amount varying from $11\%$ to $17\%$ as $\sqrt{s}$ goes from 7 to 14 TeV. The loop-induced gluon fusion contribution provides about $60\%$ of the total NNLO effect. When going from NLO to NNLO the scale uncertainties do not decrease and remain at the $\pm 3\%$ level.
The forward-backward asymmetry for massive bottom quarks at the $Z$ peak at next-to-next-to-leading order QCD
We compute the order $\alpha_s^2$ QCD corrections to the $b$-quark forward-backward asymmetry in $e^+e^-\to b{\bar b}$ collisions at the $Z$ boson resonance, taking the non-zero mass of the $b$ quark into account. We determine these corrections with respect to both the $b$-quark axis and the thrust axis definition of the asymmetry. We compute also the distributions of these axes with respect to the electron beam. If one neglects the flavor singlet contributions to the $b$-quark asymmetry, as was done in previous computations for massless $b$ quarks, then the second-order QCD corrections for $m_b\neq 0$ are smaller in magnitude than the corresponding corrections for $m_b=0$. Including the si…
Two-Loop Planar Corrections to Heavy-Quark Pair Production in the Quark-Antiquark Channel
We evaluate the planar two-loop QCD diagrams contributing to the leading color coefficient of the heavy-quark pair production cross section, in the quark-antiquark annihilation channel. We obtain the leading color coefficient in an analytic form, in terms of one- and two-dimensional harmonic polylogarithms of maximal weight 4. The result is valid for arbitrary values of the Mandelstam invariants s and t, and of the heavy-quark mass m. Our findings agree with previous analytic results in the small-mass limit and numerical results for the exact amplitude.
The two-loop five-particle amplitude in $\mathcal{N}=8$ supergravity
We compute for the first time the two-loop five-particle amplitude in $\mathcal{N}=8$ supergravity. Starting from the known integrand, we perform an integration-by-parts reduction and express the answer in terms of uniform weight master integrals. The latter are known to evaluate to non-planar pentagon functions, described by a 31-letter symbol alphabet. We express the final result for the amplitude in terms of uniform weight four symbols, multiplied by a small set of rational factors. The amplitude satisfies the expected factorization properties when one external graviton becomes soft, and when two external gravitons become collinear. We verify that the soft divergences of the amplitude ex…
W+W−Production at Hadron Colliders in Next to Next to Leading Order QCD
Charged gauge boson pair production at the Large Hadron Collider allows detailed probes of the fundamental structure of electroweak interactions. We present precise theoretical predictions for on-shell W+ W- production that include, for the first time, QCD effects up to next to next to leading order in perturbation theory. As compared to next to leading order, the inclusive W+ W- cross section is enhanced by 9% at 7 TeV and 12% at 14 TeV. The residual perturbative uncertainty is at the 3% level. The severe contamination of the W+ W- cross section due to top-quark resonances is discussed in detail. Comparing different definitions of top-free W+ W- production in the four and five flavor numbe…
Analytic form of the full two-loop five-gluon all-plus helicity amplitude
We compute the full-color two-loop five-gluon amplitude for the all-plus helicity configuration. In order to achieve this, we calculate the required master integrals for all permutations of the external legs, in the physical scattering region. We verify the expected divergence structure of the amplitude, and extract the finite hard function. We further validate our result by checking the factorization properties in the collinear limit. Our result is fully analytic and valid in the physical scattering region. We express it in a compact form containing logarithms, dilogarithms and rational functions.
Two-parton contribution to the heavy-quark forward–backward asymmetry in NNLO QCD
Forward-backward asymmetries, $A_{FB}^Q$, are important observables for the determination of the neutral-current couplings of heavy quarks in inclusive heavy quark production, $e^+ e^- \to \gamma^*, Z^* \to Q +X$. In view of the measurement perspectives on $A_{FB}^Q$ at a future linear collider, precise predictions of $A_{FB}^Q$ are required for massive quarks. We compute the contribution of the $Q \bar Q$ final state to $A_{FB}^Q$ to order $\as^2$ in the QCD coupling. We provide general formulae, and we show that this contribution to $A_{FB}^Q$ is infrared-finite. We evaluate these two-parton contributions for $b$ and $c$ quarks on and near the $Z$ resonance, and for $t$ quarks above thres…
Applications of integrand reduction to two-loop five-point scattering amplitudes in QCD
We review the current state-of-the-art in integrand level reduction for five-point scattering amplitudes at two loops in QCD. We present some benchmark results for the evaluation of the leading colour two-loop five-gluon amplitudes in the physical region as well as the partonic channels for two quarks and three gluons and four quarks and one gluon.
All Master Integrals for Three-Jet Production at Next-to-Next-to-Leading Order
We evaluate analytically all previously unknown nonplanar master integrals for massless five-particle scattering at two loops, using the differential equations method. A canonical form of the differential equations is obtained by identifying integrals with constant leading singularities, in D space-time dimensions. These integrals evaluate to Q-linear combinations of multiple polylogarithms of uniform weight at each order in the expansion in the dimensional regularization parameter and are in agreement with previous conjectures for nonplanar pentagon functions. Our results provide the complete set of two-loop Feynman integrals for any massless 2→3 scattering process, thereby opening up a ne…