0000000000086300
AUTHOR
N. A. Lo Presti
Analytic Form of the Two-Loop Planar Five-Gluon All-Plus-Helicity Amplitude in QCD
Virtual two-loop corrections to scattering amplitudes are a key ingredient to precision physics at collider experiments. We compute the full set of planar master integrals relevant to five-point functions in massless QCD, and use these to derive an analytical expression for the two-loop five-gluon all-plus-helicity amplitude. After subtracting terms that are related to the universal infrared and ultraviolet pole structure, we obtain a remarkably simple and compact finite remainder function, consisting only of dilogarithms.
Pentagon functions for massless planar scattering amplitudes
Loop amplitudes for massless five particle scattering processes contain Feynman integrals depending on the external momentum invariants: pentagon functions. We perform a detailed study of the analyticity properties and cut structure of these functions up to two loops in the planar case, where we classify and identify the minimal set of basis functions. They are computed from the canonical form of their differential equations and expressed in terms of generalized polylogarithms, or alternatively as one-dimensional integrals. We present analytical expressions and numerical evaluation routines for these pentagon functions, in all kinematical configurations relevant to five-particle scattering …
Analytic result for the nonplanar hexa-box integrals.
In this paper, we analytically compute all master integrals for one of the two non-planar integral families for five-particle massless scattering at two loops. We first derive an integral basis of 73 integrals with constant leading singularities. We then construct the system of differential equations satisfied by them, and find that it is in canonical form. The solution space is in agreement with a recent conjecture for the non-planar pentagon alphabet. We fix the boundary constants of the differential equations by exploiting constraints from the absence of unphysical singularities. The solution of the differential equations in the Euclidean region is expressed in terms of iterated integral…