Text localization from photos
In this paper a new text extraction algorithm is proposed. In real scenes the text is usually overlapped or is part of the background. To identify the text regions, in complex conditions, a method exploiting a “multi-resolution feature based method” for extracting text with undefined dimension has been developed. Once identified, the multi-resolution information are merged and skimmed through a set of Support Vector Machines (SVM). The tests and the comparisons with other techniques, performed on heterogeneous images, have shown the effectiveness of the proposed.