0000000000086524
AUTHOR
Dirk Luchtman
Targeting CD52 does not affect murine neuron and microglia function.
The humanized anti-CD52 antibody alemtuzumab is successfully used in the treatment of multiple sclerosis (MS) and is thought to exert most of its therapeutic action by depletion and repopulation of mainly B and T lymphocytes. Although neuroprotective effects of alemtuzumab have been suggested, direct effects of anti-CD52 treatment on glial cells and neurons within the CNS itself have not been investigated so far. Here, we show CD52 expression in murine neurons, astrocytes and microglia, both in vitro and in vivo. As expected, anti CD52-treatment caused profound lymphopenia and improved disease symptoms in mice subjected to experimental autoimmune encephalomyelitis (EAE). CD52 blockade also …
Pro-inflammatory T helper 17 directly harms oligodendrocytes in neuroinflammation.
Significance Multiple sclerosis (MS) is a neuroinflammatory, demyelinating disease that represents one of the most frequent causes of irreversible disability in young adults. Treatment options to halt disability are limited. We discovered that T helper (Th)17 cells in contact with oligodendrocytes produce higher levels of glutamate and induce significantly greater oligodendrocyte damage than their Th2 counterpart. Blockade of CD29, which is linked to glutamate release pathways and expressed in high levels on Th17 cells, preserved human oligodendrocyte processes from Th17-mediated injury. Our data thus provide evidence for the direct and deleterious attack of Th17 cells on the myelin compart…
Models for Assessing Anxiety and Depression in Multiple Sclerosis: from Mouse to Man
In vivo and in vitro effects of multiple sclerosis immunomodulatory therapeutics on glutamatergic excitotoxicity.
In multiple sclerosis (MS), a candidate downstream mechanism for neuronal injury is glutamate (Glu)-induced excitotoxicity, leading to toxic increases in intraneuronal Ca(2+) . Here, we used in vivo two-photon imaging in the brain of TN-XXL transgenic Ca(2+) reporter mice to test whether promising oral MS therapeutics, namely fingolimod, dimethyl fumarate, and their respective metabolites fingolimod-phosphate and monomethyl fumarate, can protect neurons against acute glutamatergic excitotoxic damage. We also assessed whether these drugs can protect against excitotoxicity in vitro using primary cortical neurons, and whether they can directly inhibit Glu release from pathogenic T-helper 17 ly…
Enhanced inflammatory and T-helper-1 type responses but suppressed lymphocyte proliferation in patients with seasonal affective disorder and treated by light therapy
Abstract Background Animals show seasonal changes in the endocrine and immune system in response to winter stressors. Even though increased inflammation has been implicated in the pathophysiology of depression, whether immune disorder is a key mediator in seasonal affective depression (SAD) is unknown. Here, we hypothesized that short photoperiods in winter may induce inflammatory response, which contributes to SAD, and that light treatments should normalize immune function and improve depressive symptoms. Methods Twenty patients with a diagnosis of SAD, and a score on the HAM-29 of 20 or higher were recruited for this study. Twenty-one healthy subjects with no personal and family history o…
Activation of microglia synergistically enhances neurodegeneration caused by MPP+ in human SH-SY5Y cells
While MPP+ may not directly activate microglia, the initial neuronal damage inflicted by the toxin may trigger microglia, possibly leading to synergistic pro-apoptotic interaction between neuro-inflammation and toxin-induced neurotoxicity, which may further aggravate neurodegeneration. However, what molecular targets are synergistically up or downregulated during this interaction is not well understood. Here, we addressed this by co-culturing fully differentiated human SH-SY5Y cells treated with parkinsonian toxin 1-Methyl-4-phenylpyridinium (MPP+), with endotoxin-activated microglial cell line EOC 20 to determine how this interaction affects pro-apoptotic (p38, JNK, and bax:bcl2 ratios) an…
Testing direct neuroprotective effects of current MS therapeutic compounds with intravital two photon laser scanning microscopy
β1-Integrin– and K(V)1.3 channel–dependent signaling stimulates glutamate release from Th17 cells
Although the impact of Th17 cells on autoimmunity is undisputable, their pathogenic effector mechanism is still enigmatic. We discovered soluble N-ethylmaleimide–sensitive factor attachment receptor (SNARE) complex proteins in Th17 cells that enable a vesicular glutamate release pathway that induces local intracytoplasmic calcium release and subsequent damage in neurons. This pathway is glutamine dependent and triggered by binding of β1-integrin to vascular cell adhesion molecule 1 (VCAM-1) on neurons in the inflammatory context. Glutamate secretion could be blocked by inhibiting either glutaminase or K(V)1.3 channels, which are known to be linked to integrin expression and highly expressed…
IL-17 and related cytokines involved in the pathology and immunotherapy of multiple sclerosis: Current and future developments.
Multiple sclerosis (MS), an autoimmune neurological disorder, is driven by self-reactive T helper (Th) cells. Research on the role of Th17 lymphocytes in MS pathogenesis has made significant progress in identifying various immunological as well as environmental factors that induce the differentiation and expansion of these cells, different subsets of Th17 cells with varying degrees of pathogenicity, and the role of the secreted effector cytokines. While approved therapies for MS offer significant benefit to patients, there remain unmet needs. Ongoing clinical trials aim to translate the advanced knowledge of Th17 cytokines to improved therapies. This review discusses the current status and …
CNS-localized myeloid cells capture living invading T cells during neuroinflammation
Using an in vivo real-time approach, the authors show that local myeloid cells remove early CNS-invading T cells via an engulfment pathway that is dependent on N-acetyl-D-glucosamine (GlcNAc) and lectin. These results reveal a novel capacity of myeloid cells to counteract neuroinflammation.
Enhanced network activity despite clinical recovery in experimental neuroinflammation using two-photon calcium imaging
FRET based ratiometric Ca(2+) imaging to investigate immune-mediated neuronal and axonal damage processes in experimental autoimmune encephalomyelitis.
Abstract Background Irreversible axonal and neuronal damage are the correlate of disability in patients suffering from multiple sclerosis (MS). A sustained increase of cytoplasmic free [Ca2+] is a common upstream event of many neuronal and axonal damage processes and could represent an early and potentially reversible step. New method We propose a method to specifically analyze the neurodegenerative aspects of experimental autoimmune encephalomyelitis by Forster Resonance Energy Transfer (FRET) imaging of neuronal and axonal Ca2+ dynamics by two-photon laser scanning microscopy (TPLSM). Results Using the genetically encoded Ca2+ sensor TN-XXL expressed in neurons and their corresponding axo…