0000000000086526
AUTHOR
Samantha Schmaul
Targeting CD52 does not affect murine neuron and microglia function.
The humanized anti-CD52 antibody alemtuzumab is successfully used in the treatment of multiple sclerosis (MS) and is thought to exert most of its therapeutic action by depletion and repopulation of mainly B and T lymphocytes. Although neuroprotective effects of alemtuzumab have been suggested, direct effects of anti-CD52 treatment on glial cells and neurons within the CNS itself have not been investigated so far. Here, we show CD52 expression in murine neurons, astrocytes and microglia, both in vitro and in vivo. As expected, anti CD52-treatment caused profound lymphopenia and improved disease symptoms in mice subjected to experimental autoimmune encephalomyelitis (EAE). CD52 blockade also …
Astrocytic potassium and calcium channels as integrators of the inflammatory and ischemic CNS microenvironment.
Abstract Astrocytes are key regulators of their surroundings by receiving and integrating stimuli from their local microenvironment, thereby regulating glial and neuronal homeostasis. Cumulating evidence supports a plethora of heterogenic astrocyte subpopulations that differ morphologically and in their expression patterns of receptors, transporters and ion channels, as well as in their functional specialisation. Astrocytic heterogeneity is especially relevant under pathological conditions. In experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis (MS), morphologically distinct astrocytic subtypes were identified and could be linked to transcriptome changes dur…
β1-Integrin– and K(V)1.3 channel–dependent signaling stimulates glutamate release from Th17 cells
Although the impact of Th17 cells on autoimmunity is undisputable, their pathogenic effector mechanism is still enigmatic. We discovered soluble N-ethylmaleimide–sensitive factor attachment receptor (SNARE) complex proteins in Th17 cells that enable a vesicular glutamate release pathway that induces local intracytoplasmic calcium release and subsequent damage in neurons. This pathway is glutamine dependent and triggered by binding of β1-integrin to vascular cell adhesion molecule 1 (VCAM-1) on neurons in the inflammatory context. Glutamate secretion could be blocked by inhibiting either glutaminase or K(V)1.3 channels, which are known to be linked to integrin expression and highly expressed…