0000000000087380

AUTHOR

Teresa Schacht

0000-0002-9398-3231

TOX3 regulates neural progenitor identity

The human genomic locus for the transcription factor TOX3 has been implicated in susceptibility to restless legs syndrome and breast cancer in genome-wide association studies, but the physiological role of TOX3 remains largely unknown. We found Tox3 to be predominantly expressed in the developing mouse brain with a peak at embryonic day E14 where it co-localizes with the neural stem and progenitor markers Nestin and Sox2 in radial glia of the ventricular zone and intermediate progenitors of the subventricular zone. Tox3 is also expressed in neural progenitor cells obtained from the ganglionic eminence of E15 mice that express Nestin, and it specifically binds the Nestin promoter in chromati…

research product

Expression of genes encoding the calcium signalosome in cellular and transgenic models of Huntington's disease

Huntington's disease (HD) is a hereditary neurodegenerative disease caused by the expansion of a polyglutamine stretch in the huntingtin (HTT) protein and characterized by dysregulated calcium homeostasis. We investigated whether these disturbances are correlated with changes in the mRNA level of the genes that encode proteins involved in calcium homeostasis and signaling (i.e., the calciosome). Using custom-made TaqMan low-density arrays containing probes for 96 genes, we quantified mRNA in the striatum in YAC128 mice, a model of HD, and wildtype mice. HTT mutation caused the increased expression of some components of the calcium signalosome, including calretinin, presenilin 2, and calmyri…

research product

Protein kinase inhibitor β enhances the constitutive activity of G-protein-coupled zinc receptor GPR39.

GPR39 is a G-protein-coupled zinc receptor that protects against diverse effectors of cell death. Its protective activity is mediated via constitutive activation of Gα13 and the RhoA pathway, leading to increased SRE (serum-response element)-dependent transcription; the zinc-dependent immediate activation of GPR39 involves Gq-mediated increases in cytosolic Ca2+ and Gs coupling leading to increased cAMP levels. We used the cytosolic and soluble C-terminus of GPR39 in a Y2H (yeast-2-hybrid) screen for interacting proteins, thus identifying PKIB (protein kinase A inhibitor β). Co-expression of GPR39 with PKIB increased the protective activity of GPR39 via the constitutive, but not the ligand-…

research product

Mitochondrial function and energy metabolism in neuronal HT22 cells resistant to oxidative stress

Background and Purpose The hippocampal cell line HT22 is an excellent model for studying the consequences of endogenous oxidative stress. Extracellular glutamate depletes cellular glutathione by blocking the glutamate/cystine antiporter system xc−. Glutathione depletion induces a well-defined programme of cell death characterized by an increase in reactive oxygen species and mitochondrial dysfunction. Experimental Approach We compared the mitochondrial shape, the abundance of mitochondrial complexes and the mitochondrial respiration of HT22 cells, selected based on their resistance to glutamate, with those of the glutamate-sensitive parental cell line. Key Results Glutamate-resistant mitoch…

research product

NECAB2 participates in an endosomal pathway of mitochondrial stress response at striatal synapses

Synaptic signaling depends on ATP generated by mitochondria. Due to extensive connectivity, the striatum is especially vulnerable to mitochondrial dysfunction and thus requires efficient mitochondrial quality control. We found that the neuronal calcium-binding protein NECAB2 ensures synaptic function in the striatum by increasing mitochondrial efficiency. NECAB2 associates with early endosomes and mitochondria at striatal synapses. Loss of NECAB2 dysregulates proteins of the endosomal ESCRT machinery and oxidative phosphorylation. Mitochondria from NECAB2-deficient mice are more abundant but less efficient. These mitochondria exhibit increased respiration and superoxide production but produ…

research product

The transmembrane Bax inhibitor motif (TMBIM) containing protein family: Tissue expression, intracellular localization and effects on the ER CA2+-filling state

Abstract Bax inhibitor-1 (BI-1) is an evolutionarily conserved pH-dependent Ca2+ leak channel in the endoplasmic reticulum and the founding member of a family of six highly hydrophobic mammalian proteins named transmembrane BAX inhibitor motif containing (TMBIM) 1-6 with BI-1 being TMBIM6. Here we compared the structure, subcellular localization, tissue expression and the effect on the cellular Ca2+ homeostasis of all family members side by side. We found that all TMBIM proteins possess the di-aspartyl pH sensor responsible for pH sensing identified in TMBIM6 and its bacterial homologue BsYetJ. TMBIM1-3 and TMBIM4-6 represent two phylogenetically distinct groups that are localized in the Go…

research product

BAX inhibitor-1 is a Ca(2+) channel critically important for immune cell function and survival.

The endoplasmic reticulum (ER) serves as the major intracellular Ca(2+) store and has a role in the synthesis and folding of proteins. BAX (BCL2-associated X protein) inhibitor-1 (BI-1) is a Ca(2+) leak channel also implicated in the response against protein misfolding, thereby connecting the Ca(2+) store and protein-folding functions of the ER. We found that BI-1-deficient mice suffer from leukopenia and erythrocytosis, have an increased number of splenic marginal zone B cells and higher abundance and nuclear translocation of NF-κB (nuclear factor-κ light-chain enhancer of activated B cells) proteins, correlating with increased cytosolic and ER Ca(2+) levels. When put into culture, purifie…

research product