0000000000087561
AUTHOR
Topi Korhonen
Electromechanics of graphene spirals
Among the most fascinating nanostructure morphologies are spirals, hybrids of somewhat obscure topology and dimensionality with technologically attractive properties. Here, we investigate mechanical and electromechanical properties of graphene spirals upon elongation by using density-functional tight-binding, continuum elasticity theory, and classical force field molecular dynamics. It turns out that electronic properties are governed by interlayer interactions as opposed to strain effects. The structural behavior is governed by van der Waals interaction: in its absence spirals unfold with equidistant layer spacings, ripple formation at spiral perimeter, and steadily increasing axial force;…
Many-particle approach to lead-molecule interactions and to the image-charge effect
Electronic structure trends of Möbius graphene nanoribbons from minimal-cell simulations
Investigating topological effects in materials requires often the modeling of material systems as a whole. Such modeling restricts system sizes, and makes it hard to extract systematic trends. Here, we investigate the effect of M\"obius topology in the electronic structures of armchair graphene nanoribbons. Using density-functional tight-binding method and minimum-cell simulations through revised periodic boundary conditions, we extract electronic trends merely by changing cells' symmetry operations and respective quantum number samplings. It turns out that for a minimum cell calculation, once geometric and magnetic contributions are ignored, the effect of the global topology is unexpectedl…
Limits of stability in supported graphene nanoribbons subject to bending
Graphene nanoribbons are prone to in-plane bending even when supported on flat substrates. However, the amount of bending that ribbons can stably withstand remains poorly known. Here, by using molecular dynamics simulations, we study the stability limits of 0.5-1.9 nm wide armchair and zigzag graphene nanoribbons subject to bending. We observe that the limits for maximum stable curvatures are below ~10 deg/nm, in case the bending is externally forced and the limit is caused by buckling instability. Furthermore, it turns out that the limits for maximum stable curvatures are also below ~10 deg/nm, in case the bending is not forced and the limit arises only from the corrugated potential energy…
Peeling of multilayer graphene creates complex interlayer sliding patterns
Peeling, shearing, and sliding are important mechanical phenomena in van der Waals solids. However, theoretically they have been studied mostly using minimal periodic cells and in the context of accurate quantum simulations. Here, we investigate the peeling of large-scale multilayer graphene stacks with varying thicknesses, stackings, and peeling directions by using classical molecular dynamics simulations with a registry-dependent interlayer potential. Simulations show that, while at large scale the peeling proceeds smoothly, at small scale the registry shifts and sliding patterns of the layers are unexpectedly intricate and depend both on the initial stacking and on the peeling direction.…
Modeling the mechanical behavior of carbon nanostructures
Low-dimensional nanostructures are expected to have vast number of applications in the future. Particularly large amount of research has been invested in the atomthick carbon membrane called graphene, which has become popular due to its unique electronic and mechanical properties. This thesis presents studies of the mechanical and electromechanical properties of several different types of graphene nanostructures. In addition, short detours are performed in order to study the elasticity of gold nanostructures and topology effects in graphene nanoribbons. The research is performed by using several different simulation methods. In simulations the system parameters and environment can be chosen…
Image charge dynamics in time-dependent quantum transport
In this work we investigate the effects of the electron-electron interaction between a molecular junction and the metallic leads in time-dependent quantum transport. We employ the recently developed embedded Kadanoff-Baym method [Phys. Rev. B 80, 115107 (2009)] and show that the molecule-lead interaction changes substantially the transient and steady-state transport properties. We first show that the mean-field Hartree-Fock (HF) approximation does not capture the polarization effects responsible for the renormalization of the molecular levels neither in nor out of equilibrium. Furthermore, due to the time-local nature of the HF self-energy there exists a region in parameter space for which …
Plenty of motion at the bottom: atomically thin liquid gold membrane
The discovery of graphene some ten years ago was the first proof of a free-standing two-dimensional (2D) solid phase. Here, using quantum molecular dynamics simulations of nanoscale gold patches suspended in graphene pores, we predict the existence of an atomically thin, free-standing 2D liquid phase. The liquid phase, enabled by the exceptional planar stability of gold due to relativistic effects, demonstrates extreme fluxionality of metal nanostructures and opens possibilities for a variety of nanoscale phenomena.