0000000000087779

AUTHOR

Francisco Vegara

0000-0001-5514-7171

Selective Change Driven Imaging: A Biomimetic Visual Sensing Strategy

Selective Change Driven (SCD) Vision is a biologically inspired strategy for acquiring, transmitting and processing images that significantly speeds up image sensing. SCD vision is based on a new CMOS image sensor which delivers, ordered by the absolute magnitude of its change, the pixels that have changed after the last time they were read out. Moreover, the traditional full frame processing hardware and programming methodology has to be changed, as a part of this biomimetic approach, to a new processing paradigm based on pixel processing in a data flow manner, instead of full frame image processing.

research product

High-speed motion detection using event-based sensing

research product

Address Event Representation (AER) approach to resistive sensor arrays

Address event representation (AER) has become an excellent strategy when approaching traditional frame based applications, mainly vision sensors. In this paper, and Within this scope, the potential of the AER paradigm is demonstrated when considering resistive (non-vision) sensor arrays. For showing quantitative evidences, MOS AMS 0.35 μm versions of some of the circuit cells typically used in AER systems, such as Winner-Take-All (WTA) circuits, have been implemented and analyzed. In these unit-cells, basic resistance-controlled sources are considered as per sensing devices. Preliminary simulation results demonstrate that this approach is valid for a wide range of resistive sensors.

research product

On the Advantages of Asynchronous Pixel Reading and Processing for High-Speed Motion Estimation

Biological visual systems are becoming an interesting source for the improvement of artificial visual systems. A biologically inspired read-out and pixel processing strategy is presented. This read-out mechanism is based on Selective pixel Change-Driven (SCD) processing. Pixels are individually processed and read-out instead of the classical approach where the read-out and processing is based on complete frames. Changing pixels are read-out and processed at short time intervals. The simulated experiments show that the response delay using this strategy is several orders of magnitude lower than current cameras while still keeping the same, or even tighter, bandwidth requirements.

research product

A Selective Change Driven System for High-Speed Motion Analysis.

Vision-based sensing algorithms are computationally-demanding tasks due to the large amount of data acquired and processed. Visual sensors deliver much information, even if data are redundant, and do not give any additional information. A Selective Change Driven (SCD) sensing system is based on a sensor that delivers, ordered by the magnitude of its change, only those pixels that have changed most since the last read-out. This allows the information stream to be adjusted to the computation capabilities. Following this strategy, a new SCD processing architecture for high-speed motion analysis, based on processing pixels instead of full frames, has been developed and implemented into a Field …

research product

Selective Change Driven Vision Sensor With Continuous-Time Logarithmic Photoreceptor and Winner-Take-All Circuit for Pixel Selection

The objective of Selective Change Driven (SCD) Vision is to capture and process those scene pixels that have the greatest impact in the motion estimation task. The implemented SCD Vision sensor delivers the pixels ordered according to the illumination change undergone by each pixel, from the last time each pixel was read-out. This ordering strategy is especially interesting for motion detection algorithms, since it allows for a reduction in data bandwidth requirements without decreasing accuracy. The speed of the obtained pixel flow allows movement detection and tracking at a speed several orders of magnitude higher than conventional vision systems. To accomplish these objectives, the senso…

research product

Taking Advantage of Selective Change Driven Processing for 3D Scanning

This article deals with the application of the principles of SCD (Selective Change Driven) vision to 3D laser scanning. Two experimental sets have been implemented: one with a classical CMOS (Complementary Metal-Oxide Semiconductor) sensor, and the other one with a recently developed CMOS SCD sensor for comparative purposes, both using the technique known as Active Triangulation. An SCD sensor only delivers the pixels that have changed most, ordered by the magnitude of their change since their last readout. The 3D scanning method is based on the systematic search through the entire image to detect pixels that exceed a certain threshold, showing the SCD approach to be ideal for this applicat…

research product

Mathematical Morphology for Color Images: An Image-Dependent Approach

This paper proposes one possibility to generalize the morphological operations (particularly, dilation, erosion, opening, and closing) to color images. First, properties of a desirable generalization are stated and a brief review is done on former approaches. Then, the method is explained, which is based on a total ordering of the colors in an image induced by its color histogram; this is valid for just one image and may present problems in smoothly coloured images. To solve these drawbacks a refinement consisting of smoothing the histogram and using a joint histogram of several images is presented. Results of applying the so-defined morphological operations on several sets of images are sh…

research product

Advanced Giant Magnetoresistance (GMR) sensors for Selective-Change Driven (SCD) circuits

Nowadays, bio-inspiration is driving novel sensors designs, beyond vision sensors. By taking advantage of their compatibility with standard CMOS technologies, the integration of giant magneto-resistance (GMR) based magnetic sensors within such event-driven approaches is proposed. With this aim, several topologies of such GMR sensors have been designed, fabricated and characterized. In addition, integrated circuit interfaces of a standard CMOS technology are also proposed. Their suitability for this approach is then demonstrated by means of Cadence IC simulations.

research product

Random telegraph signal transients in active logarithmic continuous-time vision sensors

Abstract Random Telegraph Signal (RTS) is a well-known source of noise in current submicron circuits. Its static effects have been widely studied and its noise levels are in the order of other noise sources, especially for moderate submicron transistors. Nevertheless, RTS events may produce transients many times larger than the RTS itself, and this problem seems to have not yet been addressed. In this article we present results on the transients produced by RTS events in a smart vision sensor. RTS transients in closed-loop amplifiers can be many times greater than static RTS. The duration of the RTS transient may last for several milliseconds, and can be considered almost stationary for som…

research product

A 4K-Input High-Speed Winner-Take-All (WTA) Circuit with Single-Winner Selection for Change-Driven Vision Sensors

Winner-Take-All (WTA) circuits play an important role in applications where a single element must be selected according to its relevance. They have been successfully applied in neural networks and vision sensors. These applications usually require a large number of inputs for the WTA circuit, especially for vision applications where thousands to millions of pixels may compete to be selected. WTA circuits usually exhibit poor response-time scaling with the number of competitors, and most of the current WTA implementations are designed to work with less than 100 inputs. Another problem related to the large number of inputs is the difficulty to select just one winner, since many competitors ma…

research product

Selective Change-Driven Image Processing: A Speeding-Up Strategy

Biologically inspired schemes are a source for the improvement of visual systems. Real-time implementation of image processing algorithms is constrained by the large amount of data to be processed. Full image processing is many times unnecessary since there are many pixels that suffer a small change or not suffer any change at all. A strategy based on delivering and processing pixels, instead of processing the complete frame, is presented. The pixels that have suffered higher changes in each frame, ordered by the absolute value of its change, are read-out and processed. Two examples are shown: a morphological motion detection algorithm and the Horn and Schunck optical flow algorithm. Result…

research product