0000000000087813
AUTHOR
Paraskevi Demetriou
Cadmium mass measurements between the neutron shell closures at N=50 and 82
International audience; The mass values of the neutron-deficient cadmium isotopes 99−109Cd and of the neutronrich isotopes 114,120,122−124,126,128Cd have been measured using ISOLTRAP. The behavior of the separation energies of the cadmium isotopes from N = 50 to 82 is discussed.
High accuracy [sup 18]O(p,α)[sup 15]N reaction rate in the 8⋅10[sup 6]–5⋅10[sup 9] K temperature range
The 18O(p,α)15N reaction is of great importance in several astrophysical scenarios, as it influences the production of key isotopes such as 19F, 18O and 15N. In this work, a high accuracy 18O(p,α)15N reaction rate is proposed, based on the simultaneous fit of direct measurements and of the results of a new Trojan Horse experiment. In particular, we have focused on the study of the broad 660 keV 1/2+ resonance. Since Γ∼100–300 keV, it strongly influences the nearly‐zero‐energy region of the cross section by means of the low‐energy tail of the resonant contribution and dominates the cross section at higher energies. Here we provide a factor of 2 larger reaction rate above T∼0.5 109 K based ov…
A Recoil-Beta Tagging Study of N = Z nucleus [sup 66]As
A Recoil‐Beta Tagging (RBT) experiment was recently performed at the accelerator laboratory at the University of Jyvaskyla in order to identify T = 1 excited states in the medium‐heavy N = Z = 33 nucleus 66As. The fusion‐evaporation reaction 28Si(40Ca,pn)66As was employed at a beam energy of 75 MeV. The experiment was carried out utilising the JUROGAM II γ‐ray spectrometer in conjunction with the gas‐filled recoil separator RITU and the GREAT focal plane spectrometer system. The half‐lives and ordering of the two known isomeric states in 66As have been determined. In addition, several new prompt γ‐ray transitions from excited states both bypassing and decaying to the isomeric states in 66As…
Gamow-Teller Transitions Starting from T[sub z] = +3∕2 Nucleus [sup 47]Ti
Gamow‐Teller (GT) transitions are mediated by the στ operator. Owing to its simplicity and also its spin‐isospin nature, GT transitions play key roles in the studies of nuclear structure as well as astro‐nuclear processes. In violent neutrino‐induced reactions at the core‐collapse stage of type II supernovae, Gamow‐Teller (GT) transitions starting from stable as well as unstable pf‐shell nuclei play important roles. We study GT transitions starting from 47Ti in a high‐resolution (3He,t) charge‐exchange reactions at 0° and at an intermediate incident energy of 140 MeV/nucleon at Research Center for Nuclear Physics (RCNP), Osaka. Individual GT transitions up to high excitations were observed.…
A systematic study of proton capture reactions in the SeSb region at energies relevant to the p process
Abstract A systematic investigation of (p,γ) cross sections of nuclei from Se to Sb is presented. In-beam cross section measurements were carried out at E p = 1.4–5 MeV by using an array of 4 HPGe detectors of 100% relative efficiency shielded with BGO crystals. The S factors obtained are compared with the predictions of the statistical model code MOST.
FINITE-RANGE SEPARABLE PAIRING INTERACTION WITHIN NEW N[sup 3]LO DFT APPROACH
For over four decades, the Skyrme functional within various parametrizations has been used to calculate nuclear properties. In the last few years there was a number of attempts to improve its performance and introduce generalized forms. In particular, the most general phenomenologi‐cal quasi‐local energy density functional, which contains all combinations of density, spin‐density, and their derivatives up to the sixth order (N3LO), was proposed in reference [1]. Since in the phe‐nomenological functional approaches the particle‐particle (pp) interaction channel is treated independently from the particle‐hole (ph) channel, there remains a question of what pairing interaction is suitable to us…
TAS measurements for reactor physics and nuclear structure
In this contribution we will present recent total absorption measurements of the beta decay of neutron‐rich nuclei performed at the IGISOL facility of the Univ. of Jyvaskyla. In the measurements the JYFL Penning Trap was used as a high resolution isobaric separator. The total absorption technique will be described and the impact of recent results in the fields of reactor physics (decay heat calculations) and nuclear structure will be discussed.