0000000000088200

AUTHOR

S. V. Chernykh

showing 2 related works from this author

Effects of 5 MeV electron irradiation on deep traps and electroluminescence from near-UV InGaN/GaN single quantum well light-emitting diodes with and…

2020

The electrical properties, electroluminescence (EL) power output and deep trap spectra were studied before and after 5 MeV electron irradiation of near-UV single-quantum-well (SQW) light-emitting diodes (LED) structures differing by the presence or absence of InAlN superlattice underlayers (InAlN SL UL). The presence of the underlayer is found to remarkably increase the EL output power and the radiation tolerance of LEDs, which correlates with a much lower and more slowly changing density of deep traps in the QW region with radiation dose, and the higher lifetime of charge carriers, manifested by higher short-circuit current and open-circuit voltage in current–voltage characteristics under …

Materials scienceAcoustics and UltrasonicsSuperlattice02 engineering and technologyElectroluminescence01 natural sciencesSettore ING-INF/01 - ElettronicaSettore FIS/03 - Fisica Della Materiagan ledlaw.inventionelectroluminescencelaw0103 physical sciencesElectron beam processingluminescenceQuantum wellDiode010302 applied physicsbusiness.industryradiation tolerancesuperlatticeSemiconductor device021001 nanoscience & nanotechnologyCondensed Matter PhysicsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsOptoelectronicsCharge carrier0210 nano-technologybusinessLight-emitting diode
researchProduct

Effects of InAlN underlayer on deep traps detected in near-UV InGaN/GaN single quantum well light-emitting diodes

2019

Two types of near-UV light-emitting diodes (LEDs) with an InGaN/GaN single quantum well (QW) differing only in the presence or absence of an underlayer (UL) consisting of an InAlN/GaN superlattice (SL) were examined. The InAlN-based ULs were previously shown to dramatically improve internal quantum efficiency of near-UV LEDs, via a decrease in the density of deep traps responsible for nonradiative recombination in the QW region. The main differences between samples with and without UL were (a) a higher compensation of Mg acceptors in the p-GaN:Mg contact layer of the sample without UL, which correlates with the presence of traps with an activation energy of 0.06 eV in the QW region, (b) the…

electronMaterials scienceSuperlatticeGeneral Physics and Astronomy02 engineering and technologyElectronElectroluminescenceSettore ING-INF/01 - Elettronica01 natural sciencesganSettore FIS/03 - Fisica Della Materialaw.inventionlaw0103 physical sciencesIrradiationQuantum wellDiode010302 applied physicsbusiness.industry021001 nanoscience & nanotechnologyefficiencyInAlN underlayer effects Deep traps InGaN/GaN single quantum well light-emitting diodesOptoelectronicsQuantum efficiency0210 nano-technologybusinessLight-emitting diodeJournal of Applied Physics
researchProduct