0000000000088285

AUTHOR

B. Acevedo

showing 3 related works from this author

Metabolic shift of polyphosphate-accumulating organisms with different levels of polyphosphate storage

2012

Previous studies have shown that polyphosphate-accumulating organisms (PAOs) are able to behave as glycogen-accumulating organisms (GAOs) under different conditions. In this study we investigated the behavior of a culture enriched with Accumulibacter at different levels of polyphosphate (poly-P) storage. The results of stoichiometric ratios Gly degraded/HAc uptake, PHB synthesized/HAc uptake, PHV synthesized/HAc uptake and P release/HAc uptake confirmed a metabolic shift from PAO metabolism to GAO metabolism: PAOs with high poly-P content used the poly-P to obtain adenosine tri-phosphate (ATP), and glycogen (Gly) to obtain nicotinamide adenine dinucleotide (NADH) and some ATP. In a test whe…

Accumulibacter Type IIWaste component removalUnclassified drugPhysiologyChemical compositionMicrobial metabolismStorageWastewaterNicotinamide adenine dinucleotidePolyhydroxyalkanoic acidchemistry.chemical_compoundBacteriumBioreactorsPolyphosphatesGlycolysisAnaerobiosisBiomassPolyphosphate-accumulating organismsWaste Management and DisposalAccumulibacter Type IGlycogen accumulating organismPriority journalWater Science and TechnologyFluorescence microscopyPolyhydroxyvalerateSewageGlycogenHydrolysisFluorescence in situ hybridizationEcological ModelingPhosphorusHydrogen-Ion ConcentrationBioaccumulationPollutionStoichiometryWaste treatmentPolyphosphate-accumulating organismsBiodegradation EnvironmentalEnhanced biological phosphorus removalBiochemistryGlycogen-accumulating metabolism (GAM)Nicotinamide adenine dinucleotideAccumulibacter type 1Accumulibacter type 2GlycolysisGlycogenMetabolic Networks and PathwaysAccumulibacterAdenosine triphosphateEnvironmental EngineeringBiologyAcetic acidArticleAssociative storagePolyphosphate-accumulating metabolism (PAM)PolyphosphateGlycogen-accumulating organismsGlycogen-accumulating metabolismsTECNOLOGIA DEL MEDIO AMBIENTEPolyphosphate accumulating organismCivil and Structural EngineeringPolyphosphate-accumulating organisms (PAO)BacteriaPolyphosphateMetabolismIn situ measurementGlycogen-accumulating organisms (GAO)Polyphosphate-accumulating metabolismsNonhumanAmidesCarbonMetabolismchemistryPolyphosphate (poly-P)Bacterial metabolismCell cultureVolatilizationWater Research
researchProduct

Modelling the metabolic shift of polyphosphate-accumulating organisms

2014

Enhanced biological phosphorus removal (EBPR) is one of the most important methods of phosphorus removal in municipal wastewater treatment plants, having been described by different modelling approaches. In this process, the PAOs (polyphosphate accumulating organisms) and GAOs (glycogen accumulating organisms) compete for volatile fatty acids uptake under anaerobic conditions. Recent studies have revealed that the metabolic pathways used by PAOs in order to obtain the energy and the reducing power needed for polyhydroxyalkanoates synthesis could change depending on the amount of polyphosphate stored in the cells. The model presented in this paper extends beyond previously developed metaboli…

Environmental Engineering0207 environmental engineeringchemistry.chemical_element02 engineering and technology010501 environmental sciencesBiologyModels Biological01 natural sciencesPolyphosphate accumulating metabolism (PAM)Polyphosphate accumulating organism (PAO)Polyhydroxyalkanoateschemistry.chemical_compoundBioreactorsPolyphosphatesEnhanced biological phosphorus removal (EBPR)AnaerobiosisBiomass020701 environmental engineeringGlycogen accumulating metabolism (GAM)Waste Management and DisposalTECNOLOGIA DEL MEDIO AMBIENTE0105 earth and related environmental sciencesWater Science and TechnologyCivil and Structural EngineeringBacteriaEcological ModelingPolyphosphatePhosphorusPollutionAerobiosis6. Clean waterPolyphosphate-accumulating organismsMetabolic pathwayEnhanced biological phosphorus removalActivated sludgechemistryBiochemistryPolyphosphate (poly-P)Metabolic modelsAnaerobic exerciseGlycogenMetabolic Networks and Pathways
researchProduct

The metabolic versatility of PAOs as an opportunity to obtain a highly P-enriched stream for further P-recovery

2015

The effects of two sequencing batch reactor operation strategies for phosphorus stream enrichment over the biological phosphorus removal performance have been studied. The objective of both strategies is of performing an extraction cycle in order to obtain a new stream highly enriched with phosphorus. In the 1st strategy the amount of influent volatile fatty acids (VFAs) is the same in each cycle; while in the 2nd strategy the influent VFAs concentration is increased during phosphorus extraction experiments. Despite the strong decrease of the stored poly-P inside the cells in both strategies after the recovery cycles, the ability of the systems to remove phosphorus was not affected. The P-r…

Glycogen degradationGeneral Chemical EngineeringPhosphorusExtraction (chemistry)chemistry.chemical_elementSequencing batch reactorGeneral ChemistryPulp and paper industrySequencing batch reactor (SBR)Polyphosphate accumulating metabolism (PAM)Industrial and Manufacturing EngineeringVolatile fatty acidsEnhanced biological phosphorus removalchemistryBiochemistryPhosphorus recoveryPolyphosphate (poly-P)Carbon sourceEnhanced biological phosphorus removal (EBPR)Environmental ChemistryDegradation (geology)Glycogen accumulating metabolism (GAM)TECNOLOGIA DEL MEDIO AMBIENTE
researchProduct