0000000000088335

AUTHOR

D. Beaumel

Digital pulse-shape analysis with a TRACE early silicon prototype

[EN] A highly segmented silicon-pad detector prototype has been tested to explore the performance of the digital pulse shape analysis in the discrimination of the particles reaching the silicon detector. For the first time a 200 tun thin silicon detector, grown using an ordinary floating zone technique, has been shown to exhibit a level discrimination thanks to the fine segmentation. Light-charged particles down to few MeV have been separated, including their punch-through. A coaxial HPGe detector in time coincidence has further confirmed the quality of the particle discrimination. K.; 2014 Elsevier B.V. All rights reserved

research product

Study of $^{45}$Ar through (d, p) reaction at SPIRAL

NESTER; International audience; The structure of the neutron-rich nucleus $^{45}$Ar has been investigated through the d($^{44}$Ar,$^{45}$Ar)p transfer reaction. Radioactive beam of $^{44}$Ar at 10 A MeV has been provided by the SPIRAL facility at GANIL. The protons corresponding to a neutron pick-up on bound or unbound states mechanism in $^{45}$Ar nuclei were detected at backward angles by the detector array MUST. The transfer-like ejectiles were detected in the SPEG spectrometer. Level scheme, spin assignments and spectroscopic factors have been deduced for $^{45}$Ar and compared to shell model predictions. These parameters will be subsequently used to infer (n, $\gamma$) cross sections i…

research product

Structure of theN=27isotones derived from theAr44(d,p)Ar45reaction

The $^{44}\mathrm{Ar}$($d,p$)$^{45}\mathrm{Ar}$ neutron transfer reaction was performed at $10A$ MeV. Measured excitation energies, deduced angular momenta, and spectroscopic factors of the states populated in $^{45}\mathrm{Ar}$ are reported. A satisfactory description of these properties is achieved in the shell model framework using a new $\mathit{sdpf}$ interaction. The model analysis is extended to more exotic even-$Z$ nuclei down to ${}_{14}^{41}{\mathrm{Si}}_{27}$ to study how collectivity impacts the low-lying structure of $N=27$ neutron-rich nuclei.

research product