Unitary time-dependent superconvergent technique for pulse-driven quantum dynamics
We present a superconvergent Kolmogorov-Arnold-Moser type of perturbation theory for time-dependent Hamiltonians. It is strictly unitary upon truncation at an arbitrary order and not restricted to periodic or quasiperiodic Hamiltonians. Moreover, for pulse-driven systems we construct explicitly the KAM transformations involved in the iterative procedure. The technique is illustrated on a two-level model perturbed by a pulsed interaction for which we obtain convergence all the way from the sudden regime to the opposite adiabatic regime.
Time-dependent unitary perturbation theory for intense laser-driven molecular orientation
We apply a time-dependent perturbation theory based on unitary transformations combined with averaging techniques, on molecular orientation dynamics by ultrashort pulses. We test the validity and the accuracy of this approach on LiCl described within a rigid-rotor model and find that it is more accurate than other approximations. Furthermore, it is shown that a noticeable orientation can be achieved for experimentally standard short laser pulses of zero time average. In this case, we determine the dynamically relevant parameters by using the perturbative propagator, that is derived from this scheme, and we investigate the temperature effects on the molecular orientation dynamics.
Laser control for the optimal evolution of pure quantum states
Starting from an initial pure quantum state, we present a strategy for reaching a target state corresponding to the extremum (maximum or minimum) of a given observable. We show that a sequence of pulses of moderate intensity, applied at times when the average of the observable reaches its local or global extremum, constitutes a strategy transferable to different control issues. Among them, post-pulse molecular alignment and orientation are presented as examples. The robustness of such strategies with respect to experimentally relevant parameters is also examined.
Control of molecular dynamics with zero-area fields: Application to molecular orientation and photofragmentation
The constraint of time-integrated zero-area on the laser field is a fundamental, both theoretical and experimental requirement in the control of molecular dynamics. By using techniques of local and optimal control theory, we show how to enforce this constraint on two benchmark control problems, namely molecular orientation and photofragmentation. The origin and the physical implications on the dynamics of this zero-area control field are discussed.
Reaching optimally oriented molecular states by laser kicks
We present a strategy for post-pulse orientation aiming both at efficiency and maximal duration within a rotational period. We first identify the optimally oriented states which fulfill both requirements. We show that a sequence of half-cycle pulses of moderate intensity can be devised for reaching these target states.
Optimized time-dependent perturbation theory for pulse-driven quantum dynamics in atomic or molecular systems
We present a time-dependent perturbative approach adapted to the treatment of intense pulsed interactions. We show there is a freedom in choosing secular terms and use it to optimize the accuracy of the approximation. We apply this formulation to a unitary superconvergent technique and improve the accuracy by several orders of magnitude with respect to the Magnus expansion.
External constraints on optimal control strategies in molecular orientation and photofragmentation: Role of zero-area fields
We propose a new formulation of optimal and local control algorithms which enforces the constraint of time-integrated zero-area on the control field. The fulfillment of this requirement, crucial in many physical applications, is mathematically implemented by the introduction of a Lagrange multiplier aiming at penalizing the pulse area. This method allows to design a control field with an area as small as possible, while bringing the dynamical system close to the target state. We test the efficiency of this approach on two control purposes in molecular dynamics, namely, orientation and photodissociation.
Pulse-driven quantum dynamics beyond the impulsive regime
We review various unitary time-dependent perturbation theories and compare them formally and numerically. We show that the Kolmogorov-Arnold-Moser technique performs better owing to both the superexponential character of correction terms and the possibility to optimize the accuracy of a given level of approximation which is explored in details here. As an illustration, we consider a two-level system driven by short pulses beyond the sudden limit.