0000000000089537

AUTHOR

Alice Donà

Gold nanostars coated with neutral and charged polyethylene glycols: A comparative study of in-vitro biocompatibility and of their interaction with SH-SY5Y neuroblastoma cells

Gold nanostars (GNS) have been coated with four different polyethylene glycols (PEGs) equipped with a -SH function for grafting on the gold surface. These PEGs have different chain lengths with average MW = 2000, 3000, 5000 and average number of -O-CH2-CH2 - units 44, 66, and 111, respectively. Two are neutral and two are terminated with -COOH and -NH2 functions, thus bearing negative and positive charges at physiological pH, thanks to the formation of carboxylate and ammonium groups. The negative charge of the GNS coated with PEG carboxylate has also been exploited to further coat the GNS with the PAH (polyallylamine hydrochloride) cationic polymer. Vitality tests have been carried out on …

research product

Amphiphilic Copolymers Based on Poly[(hydroxyethyl)-d,l-aspartamide]: A Suitable Functional Coating for Biocompatible Gold Nanostars

Novel amphiphilic copolymers have been synthesized based on a biocompatible poly(hydroxyethylaspartamide) (PHEA) backbone, bearing both anchoring groups for gold nanoparticles, such as thiols and disulfide, and conjugable moieties, such as amino groups, the latter as points suitable for appending further functional agents. The strategy was to functionalize α,β-poly[(N-2- hydroxyethyl)-d,l-aspartamide] (PHEA) with PEG2000-NH2 and with ethylenediamine (EDA) obtaining a partially pegylated copolymer with a large number of pendant primary amino groups. A fraction of the latter was conjugated with molecules bearing terminal thiol moieties such as 12-mercaptododecanoic acid (MDA) and disulfide gr…

research product

Gold nanostars co-coated with the Cu(II) complex of a tetraazamacrocyclic ligand

The twelve-membered tetraazamacrocyclic ligand L1 bears an appended lipoic acid unit, whose disulphide ring is an efficient grafting moiety for the surface of gold nanostars (GNS). The GNS that were used featured a localized surface plasmon resonance (LSPR) absorption at ∼800 nm, i.e. in the near infrared (NIR). We investigated different approaches for coating them with the Cu(2+) complex of L1. While the direct reaction of [CuL1](2+) with as-prepared GNS led to aggregation, an initial coating step with polyethyleneglycol-thiol (PEG-SH) was found to be advantageous. Displacement reactions were carried out on pegylated GNS either with [CuL1](2+), directly generating [Cun(L1@GNS)](2n+), or wi…

research product