0000000000089543

AUTHOR

K. S. Kumar

Neutron skin studies of medium and heavy nuclei

The recent PREX experiment at JLab has demonstrated the sensitivity of parity violating electron scattering to the neutron density, meanwhile outlining its major experimental challenges. On the other side, intermediate energy photons are an ideal probe for studying the properties of strongly interacting matter from the nuclear scale down to the sub-nuclear components of the nucleus. Among others coherent pion photoproduction can provide information on the existence and nature of neutron skins in nuclei. The simultaneous combination of different techniques allows a systematic determination across the periodic table thus benchmarking modern calculation. Recently a systematic investigation of …

research product

Accurate Determination of the Neutron Skin Thickness of Pb208 through Parity-Violation in Electron Scattering

We report a precision measurement of the parity-violating asymmetry A_{PV} in the elastic scattering of longitudinally polarized electrons from ^{208}Pb. We measure A_{PV}=550±16(stat)±8(syst) parts per billion, leading to an extraction of the neutral weak form factor F_{W}(Q^{2}=0.00616  GeV^{2})=0.368±0.013. Combined with our previous measurement, the extracted neutron skin thickness is R_{n}-R_{p}=0.283±0.071  fm. The result also yields the first significant direct measurement of the interior weak density of ^{208}Pb: ρ_{W}^{0}=-0.0796±0.0036(exp)±0.0013(theo)  fm^{-3} leading to the interior baryon density ρ_{b}^{0}=0.1480±0.0036(exp)±0.0013(theo)  fm^{-3}. The measurement accurately co…

research product

Virtual Compton scattering and the generalized polarizabilities of the proton atQ2=0.92and 1.76 GeV2

Virtual Compton Scattering (VCS) on the proton has been studied at Jefferson Lab using the exclusive photon electroproduction reaction (e p --> e p gamma). This paper gives a detailed account of the analysis which has led to the determination of the structure functions P{sub LL}-P{sub TT}/epsilon and P{sub LT}, and the electric and magnetic generalized polarizabilities (GPs) alpha{sub E}(Q{sup 2}) and beta{sub M}(Q{sup 2}) at values of the four-momentum transfer squared Q{sup 2} = 0.92 and 1.76 GeV{sup 2}. These data, together with the results of VCS experiments at lower momenta, help building a coherent picture of the electric and magnetic GPs of the proton over the full measured Q{sup 2}-…

research product

Electron Ion Collider: The Next QCD Frontier - Understanding the glue that binds us all

This White Paper presents the science case of an Electron-Ion Collider (EIC), focused on the structure and interactions of gluon-dominated matter, with the intent to articulate it to the broader nuclear science community. It was commissioned by the managements of Brookhaven National Laboratory (BNL) and Thomas Jefferson National Accelerator Facility (JLab) with the objective of presenting a summary of scientific opportunities and goals of the EIC as a follow-up to the 2007 NSAC Long Range plan. This document is a culmination of a community-wide effort in nuclear science following a series of workshops on EIC physics and, in particular, the focused ten-week program on "Gluons and quark sea a…

research product

From deep inside to outer space: exploring neutron skins

research product

New Measurements of the Transverse Beam Asymmetry for Elastic Electron Scattering from Selected Nuclei

We have measured the beam-normal single-spin asymmetry $A_n$ in the elastic scattering of 1-3 GeV transversely polarized electrons from $^1$H and for the first time from $^4$He, $^{12}$C, and $^{208}$Pb. For $^1$H, $^4$He and $^{12}$C, the measurements are in agreement with calculations that relate $A_n$ to the imaginary part of the two-photon exchange amplitude including inelastic intermediate states. Surprisingly, the $^{208}$Pb result is significantly smaller than the corresponding prediction using the same formalism. These results suggest that a systematic set of new $A_n$ measurements might emerge as a new and sensitive probe of the structure of heavy nuclei.

research product

Backward electroproduction ofπ0mesons on protons in the region of nucleon resonances at four momentum transfer squaredQ2=1.0GeV2

Exclusive electroproduction of pi{sup 0} mesons on protons in the backward hemisphere has been studied at Q2 = 1.0 GeV2 by detecting protons in the forward direction in coincidence with scattered electrons from the 4 GeV electron beam in Jefferson Lab's Hall A. The data span the range of the total (gamma*p) center-of-mass energy W from the pion production threshold to W = 2.0 GeV. The differential cross sections sigma{sub T} + epsilon sigma{sub L}, sigma{sub TL}, and sigma{sub TT} were separated from the azimuthal distribution and are presented together with the MAID and SAID parameterizations.

research product

Virtual Compton Scattering and Neutral Pion Electroproduction in the Resonance Region up to the Deep Inelastic Region at Backward Angles

We have made the first measurements of the virtual Compton scattering (VCS) process via the H$(e,e'p)\gamma$ exclusive reaction in the nucleon resonance region, at backward angles. Results are presented for the $W$-dependence at fixed $Q^2=1$ GeV$^2$, and for the $Q^2$-dependence at fixed $W$ near 1.5 GeV. The VCS data show resonant structures in the first and second resonance regions. The observed $Q^2$-dependence is smooth. The measured ratio of H$(e,e'p)\gamma$ to H$(e,e'p)\pi^0$ cross sections emphasizes the different sensitivity of these two reactions to the various nucleon resonances. Finally, when compared to Real Compton Scattering (RCS) at high energy and large angles, our VCS data…

research product

Status and prospects of Rn measurements at Mainz

Parity-violating electron scattering is particularly sensitive to the neutron density. The recent PREX experiment at the Jefferson Laboratory (JLab) has demonstrated the feasibility of this method meanwhile outlining its major experimental challenges. On the other side intermediate energy photons are an ideal probe for studying the properties of strongly interacting matter from the nuclear scale down to the sub-nuclear components of the nucleus. Among others, coherent pion photoproduction on nuclei is an attractive approach to obtain information on the existence and nature of neutron skins in nuclei. The simultaneous combination of different techniques allows a systematic determination of t…

research product

Measurement of the Spectral Shape of the β -Decay of Xe137 to the Ground State of Cs137 in EXO-200 and Comparison with Theory

We report on a comparison between the theoretically predicted and experimentally measured spectra of the first-forbidden nonunique β-decay transition ^{137}Xe(7/2^{-})→^{137}Cs(7/2^{+}). The experimental data were acquired by the EXO-200 experiment during a deployment of an AmBe neutron source. The ultralow background environment of EXO-200, together with dedicated source deployment and analysis procedures, allowed for collection of a pure sample of the decays, with an estimated signal to background ratio of more than 99 to 1 in the energy range from 1075 to 4175 keV. In addition to providing a rare and accurate measurement of the first-forbidden nonunique β-decay shape, this work constitut…

research product

Study of light backgrounds from relativistic electrons in air light-guides

The MOLLER experiment proposed at the Thomas Jefferson National Accelerator Facility plans a precision low energy determination of the weak mixing angle via the measurement of the parity-violating asymmetry in the scattering of high energy longitudinally polarized electrons from electrons bound in a liquid hydrogen target (M{\o}ller scattering). A relative measure of the scattering rate is planned to be obtained by intercepting the M{\o}ller scattered electrons with a circular array of thin fused silica tiles attached to air light guides, which facilitate the transport of Cherenkov photons generated within the tiles to photomultiplier tubes (PMTs). The scattered flux will also pass through …

research product

Measurement of the Spectral Shape of the beta-decay of 137Xe to the Ground State of 137Cs in EXO-200 and Comparison with Theory

We report on a comparison between the theoretically predicted and experimentally measured spectra of the first-forbidden non-unique $\beta$-decay transition $^{137}\textrm{Xe}(7/2^-)\to\,^{137}\textrm{Cs}(7/2^+)$. The experimental data were acquired by the EXO-200 experiment during a deployment of an AmBe neutron source. The ultra-low background environment of EXO-200, together with dedicated source deployment and analysis procedures, allowed for collection of a pure sample of the decays, with an estimated signal-to-background ratio of more than 99-to-1 in the energy range from 1075 to 4175 keV. In addition to providing a rare and accurate measurement of the first-forbidden non-unique $\bet…

research product