Dystrophin-deficiency increases the susceptibility to doxorubicin-induced cardiotoxicity
Background and aim: The clinical use of doxorubicin (DOX) and other anthracyclines is limited by a dosage-dependent cardiotoxicity, which can lead to cardiomyopathy. The role of the individual genetic makeup in this disorder is poorly understood. Alterations in genes encoding cardiac cytoskeleton or sarcolemma proteins may increase the susceptibility to doxorubicin-related cardiotoxicity. Methods: Female dystrophin-deficient mice (MDX) and age-matched wild-type mice underwent chronic treatment with doxorubicin. Cardiac function and tissue damage were assessed by echocardiography and histopathology, respectively. Gene expression changes were investigated using microarrays. Results: DOX treat…
Interferon-γ Induces Chronic Active Myocarditis and Cardiomyopathy in Transgenic Mice
Chronic heart failure is associated with an activation of the immune system characterized among other factors by the cardiac synthesis and serum expression of proinflammatory cytokines. There is unequivocal clinical and experimental evidence that the cytokine tumor necrosis factor-alpha is involved in the development of chronic heart failure, but a putative cardiotoxic potential of the proinflammatory cytokine interferon (IFN)-gamma remains primarily unknown. To investigate this issue we analyzed the cardiac phenotype of SAP-IFN-gamma transgenic mice, which constitutively express IFN-gamma in their livers and hence exhibit high circulating serum levels of this cytokine. SAP-IFN-gamma mice s…