0000000000089878

AUTHOR

Tomasz Szoplik

Asymmetric transmission of terahertz radiation through a double grating.

We report on experimental evidence of unidirectional transmission of terahertz waves through a pair of metallic gratings with different periods. The gratings are optimized for a broadband transmission in one direction, accompanied with a high extinction rate in the opposite direction. In contrast to previous studies, we show that the zero-order nonreciprocity cannot be achieved. Nonetheless, we confirm that the structure can be used successfully as an asymmetric filter.

research product

Rank-order and morphological enhancement of image details with an optoelectronic processor.

In all-optical processors, enhancement of image details is the result of high-pass filtering. We describe an optoelectronic processor in which detail enhancement results from the digitally calculated difference between an original input image and its low-pass filtered version. The low-pass filtering is realized through the rank-order median and the morphological opening and closing operations calculated by use of the optical convolver. It is shown that the normalized difference between the morphological white and black top hats enhances bright and dark image details analogously to the rank-order unsharp masking.

research product

Shift-and-scale-invariant pattern recognition using an elliptic coordinate-transformed phase-only filter

A shift-and-scale-invariant elliptic coordinate-transformed phase-only filter in proposed. The filter is built in three steps: the complex conjugate of a basic-size target spectrum is calculated, its phase-only part is taken, and then the elliptic coordinate transformation is made. In the extreme case the scale ratio of recognizable objects equals 1:1.5, permitting good recognition of object sizes S within the range 0.83/= S/= 1.25. Discrimination abilities and relative Horner efficiencies of a few versions of the filter are calculated.

research product

Asymmetric transmission of transverse magnetic or radially polarized THZ waves through sub-wavelength gratings

We have developed a metallic double circular grating with sub-wavelength slits which blocks radially polarized light incident from one of its sides and acts as a focusing diffractive element in the other direction. The proposed grating has been optimized for the sub-THz frequency range. Unidirectional transmission through the grating has been demonstrated experimentally at 0.1 THz. We have also developed a planar metallic double grating with sub-wavelength slits which blocks light with a transverse magnetic polarization incident from one of the grating sides and transmits radiation incident from the opposite direction into the +1 and −1 diffraction orders. These gratings which could be used…

research product

Optoelectronic morphological image processor.

A morphological optoelectronic image processor based on the threshold decomposition concept is described and demonstrated. Binary slices of a gray-scale input image are optically convolved with a binary structuring element of arbitrary size and shape in a noncoherent convolver. The slices are displayed on a liquid-crystal spatial light modulator of 320 × 264 pixels. The kernels are implemented as modifications of the system impulse response. The processor’s convolution patterns are recorded with a CCD camera and fed into a PC by a frame grabber. Subsequent elementary morphological operations are looped. Examples of processing an input image of 256 × 256 pixels and 16 gray levels with kernel…

research product

Broadband asymmetric transmission of THz radiation through double metallic gratings

We analyse numerically and experimentally the asymmetric transmission through sub-wavelength double metallic gratings. The possibility of achieving a broadband unidirectional transmission of THz waves through the grating is confirmed. The proposed gratings allow for efficient one-way transmission in the wavelength range from 2.5 to 3.5 mm.

research product

Nonsymmetric Fourier transforming with an anamorphic system

The idea of obtaining a nonsymmetric Fourier transform with crossed cylindrical lenses of different focal lengths is presented. The anamorphic rotation-variant system produces a scaled Fourier transform F(u,mv) of an object f(x,y), where m is a scaling constant. The system performs controlled angular magnification of an object spectrum. It is shown that the super resolution in one direction is gained by reducing the number of degrees of freedom of the optical message in the other. Experimental results are shown where the scaling constant m of up to 10 has been obtained.

research product