0000000000089897

AUTHOR

Francesca Gelpi

0000-0002-9221-6153

showing 5 related works from this author

Dynamic cerebrovascular autoregulation in patients prone to postural syncope: Comparison of techniques assessing the autoregulation index from sponta…

2021

Abstract Three approaches to the assessment of cerebrovascular autoregulation (CA) via the computation of the autoregulation index (ARI) from spontaneous variability of mean arterial pressure (MAP) and mean cerebral blood flow velocity (MCBFV) were applied: 1) a time domain method (TDM); 2) a nonparametric method (nonPM); 3) a parametric method (PM). Performances were tested over matched and surrogate unmatched pairs. Data were analyzed at supine resting (REST) and during the early phase of 60° head-up tilt (TILT) in 13 subjects with previous history of postural syncope (SYNC, age: 28 ± 9 yrs.; 5 males) and 13 control individuals (noSYNC, age: 27 ± 8 yrs.; 5 males). Analysis was completed b…

AdultMalemedicine.medical_specialtyMean arterial pressureSupine positionBlood PressureSyncopeCellular and Molecular NeuroscienceOrthostatic vital signsYoung AdultInternal medicinemedicineHeart rate variabilityHomeostasisHumansAutonomic nervous systemAutoregulationMean cerebral blood flow velocityHeart rate variabilityArterial pressureEndocrine and Autonomic Systemsbusiness.industryHead-up tiltAutonomic nervous systemBlood pressureCerebral blood flowCerebrovascular CirculationCardiovascular controlCardiologyNeurology (clinical)businessBlood Flow Velocity
researchProduct

Spectral decomposition of cerebrovascular and cardiovascular interactions in patients prone to postural syncope and healthy controls.

2022

We present a framework for the linear parametric analysis of pairwise interactions in bivariate time series in the time and frequency domains, which allows the evaluation of total, causal and instantaneous interactions and connects time- and frequency-domain measures. The framework is applied to physiological time series to investigate the cerebrovascular regulation from the variability of mean cerebral blood flow velocity (CBFV) and mean arterial pressure (MAP), and the cardiovascular regulation from the variability of heart period (HP) and systolic arterial pressure (SAP). We analyze time series acquired at rest and during the early and late phase of head-up tilt in subjects developing or…

Endocrine and Autonomic SystemsTime series analysisBlood PressureHeartBaroreflexCardiovascular SystemSyncopeCerebral autoregulationCellular and Molecular NeuroscienceHeart RateAutoregressive modelsCardiovascular controlCerebrovascular CirculationGranger causalitySettore ING-INF/06 - Bioingegneria Elettronica e InformaticaHumansNeurology (clinical)Spectral decompositionAutoregressive models; Cardiovascular control; Cerebral autoregulation; Granger causality; Spectral decomposition; Time series analysis;Autonomic neuroscience : basicclinical
researchProduct

Exploring metrics for the characterization of the cerebral autoregulation during head-up tilt and propofol general anesthesia

2022

Techniques grounded on the simultaneous utilization of Tiecks' second order differential equations and spontaneous variability of mean arterial pressure (MAP) and mean cerebral blood flow velocity (MCBFV), recorded from middle cerebral arteries through a transcranial Doppler device, provide a characterization of cerebral autoregulation (CA) via the autoregulation index (ARI). These methods exploit two metrics for comparing the measured MCBFV series with the version predicted by Tiecks' model: normalized mean square prediction error (NMSPE) and normalized correlation rho. The aim of this study is to assess the two metrics for ARI computation in 13 healthy subjects (age: 27 & PLUSMN; 8 yr…

AdultMaleUltrasonography Doppler TranscranialEndocrine and Autonomic SystemsAutoregulation indexBlood PressureSpontaneous variability; Cerebral blood flow; Mean arterial pressure; Cardiovascular control; Autoregulation index; Autonomic nervous systemAnesthesia GeneralMiddle AgedCerebral blood flowMean arterial pressureYoung AdultCellular and Molecular NeuroscienceCerebrovascular CirculationCardiovascular controlSettore ING-INF/06 - Bioingegneria Elettronica e InformaticaHomeostasisHumansAutonomic nervous systemNeurology (clinical)PropofolBlood Flow VelocitySpontaneous variabilityAged
researchProduct

Correlation between Baroreflex Sensitivity and Cerebral Autoregulation Index in Healthy Subjects

2021

Despite the acknowledged interaction between baroreflex and cerebral autoregulation (CA), their functional relationship remains controversial. The study investigates this relationship in a healthy population undergoing an orthostatic challenge. Thirteen healthy subjects (age: 27pm 8 yrs; 5 males) underwent electrocardiogram, arterial pressure (AP) and cerebral blood flow velocity (CBFV) recordings at supine resting (REST) and during 60° head-up tilt (TILT). CA was assessed via the autoregulation index (ARI) from spontaneous variations of mean AP and mean CBFV. The cardiac control and baroreflex were evaluated via frequency domain and transfer function analyses applied to systolic AP and hea…

Cerebral Autoregulation
researchProduct

Categorizing the Role of Respiration in Cardiovascular and Cerebrovascular Variability Interactions

2022

Objective: Respiration disturbs cardiovascular and cerebrovascular controls but its role is not fully elucidated. Methods: Respiration can be classified as a confounder if its observation reduces the strength of the causal relationship from source to target. Respiration is a suppressor if the opposite situation holds. We prove that a confounding/suppression (C/S) test can be accomplished by evaluating the sign of net redundancy/synergy balance in the predictability framework based on multivariate autoregressive modelling. In addition, we suggest that, under the hypothesis of Gaussian processes, the C/S test can be given in the transfer entropy decomposition framework as well. Experimental p…

AdultMalePhysiologyBiomedical EngineeringsynergyBlood Pressurecardiac neural controlYoung Adulthead-up tiltHeart RateHumansArterial PressureAnesthesiaPropofolAgedMultivariate autoregressive modelredundancyRespirationcerebrovascular autoregulationautonomic nervous systemheart rate variabilityMediationtransfer entropyHeartIndexesMiddle Agedsuppressiongeneral anesthesiapredictability decompositionconfoundingCerebrovascular CirculationSettore ING-INF/06 - Bioingegneria Elettronica e Informaticaautonomic nervous system; cardiac neural control; cerebrovascular autoregulation; confounding; general anesthesia; head-up tilt; heart rate variability; Multivariate autoregressive model; predictability decomposition; redundancy; suppression; synergy; transfer entropy;ProtocolsRegulation
researchProduct