0000000000090188

AUTHOR

W. Czarnacki

Examination of the influence of transfer channels on the barrier height distribution: Scattering of 20Ne on 58Ni, 60Ni, and 61Ni at near-barrier energies

Background: It was suggested that the shape of the barrier height distribution can be determined not only by strong reaction channels (collective excitations) but also by weak channels such as transfers and/or noncollective excitations. Purpose: The study of the barrier height distributions for the 20Ne + 58,60,61Ni systems requires information on transfer cross sections at near-barrier energies. Methods: A measurement of the cross sections for various transfer channels at a backward angle (142 degrees), at a near-barrier energy was performed. Identification of products was based on time-of-flight and E-E methods. A measurement of the angular distribution of α stripping in the 20Ne + 61Ni s…

research product

Weak channels in backscattering of20Ne onnatNi,118Sn, and208Pb

To further our understanding of the influence of weakly coupled channels on the distribution of Coulomb barrier heights, we have measured transfer cross sections for ${}^{20}$Ne ions backscattered from ${}^{\mathrm{nat}}$Ni, ${}^{118}$Sn, and ${}^{208}$Pb targets at near-barrier energies. The $Q$ value spectrum in the case of ${}^{208}$Pb target has been determined too. The transfer channels appear to be especially important for ${}^{208}$Pb, whose double-closed-shell nature leads to a relatively low level density for noncollective inelastic excitations.

research product

Examination of the influence of transfer channels on the barrier height distribution: Scattering ofNe20onNi58,Ni60, andNi61at near-barrier energies

Background: It was suggested that the shape of the barrier height distribution can be determined not only by strong reaction channels (collective excitations) but also by weak channels such as transfers and/or noncollective excitations.Purpose: The study of the barrier height distributions for the $^{20}\mathrm{Ne}+\phantom{\rule{0.16em}{0ex}}^{58,60,61}\mathrm{Ni}$ systems requires information on transfer cross sections at near-barrier energies.Methods: A measurement of the cross sections for various transfer channels at a backward angle (142 degrees), at a near-barrier energy was performed. Identification of products was based on time-of-flight and $\mathrm{\ensuremath{\Delta}}E\text{\ens…

research product

Weak channels in backscattering of ^{20}Ne on ^{nat}Ni, ^{118}Sn, and ^{208}Pb

To further our understanding of the influence of weakly coupled channels on the distribution of Coulomb barrier heights, we have measured transfer cross sections for 20Ne ions backscattered from natNi, 118Sn, and 208Pb targets at near-barrier energies. The Q value spectrum in the case of 208Pb target has been determined too. The transfer channels appear to be especially important for 208Pb, whose double-closed-shell nature leads to a relatively low level density for noncollective inelastic excitations. peerReviewed

research product