0000000000092166
AUTHOR
Amedea Manfredi
RGD-mimic polyamidoamine-montmorillonite composites with tunable stiffness as scaffolds for bone tissue-engineering applications
This paper reports on the development of montmorillonite (MMT)-reinforced hydrogels, based on a peptidomimetic polyamidoamine carrying guanidine pendants (AGMA1), as substrates for the osteo-induction of osteoblast precursor cells. AGMA1 hydrogels of various degrees of crosslinking responded favourably to MMT reinforcement, giving rise to composite hydrogels with shear storage modulus G', when fully swollen in water, up to 200 kPa, i.e. 20 times higher than the virgin hydrogels and of the same order or higher than other hydrogel-based composites proposed for orthopaedic applications. This significant improvement was ascribed to the effective interpenetration between the polymer matrix and t…
A soluble biocompatible guanidine-containing polyamidoamine as promoter of primary brain cell adhesion andin vitrocell culturing
This paper reports on a novel application of an amphoteric water-soluble polyamidoamine named AGMA1 bearing 4-butylguanidine pendants. AGMA1 is an amphoteric, prevailingly cationic polyelectrolyte with isoelectric point of about 10. At pH 7.4 it is zwitterionic with an average of 0.55 excess positive charges per unit, notwithstanding it is highly biocompatible. In this work, it was found that AGMA1 surface-adsorbed on cell culturing coverslips exhibits excellent properties as adhesion and proliferation promoter of primary brain cells such as microglia, as well as of hippocampal neurons and astrocytes. Microglia cells cultured on AGMA1-coated coverslips substrate displayed the typical restin…
Linear biocompatible mannosylated PAAs as potential broad-‐spectrum microbicides for sexually transmitted diseases
.
Linear biocompatible glyco-polyamidoamines as dual action mode virus infection inhibitors with potential as broad-spectrum microbicides for sexually transmitted diseases
AbstractThe initial steps of viral infections are mediated by interactions between viral proteins and cellular receptors. Blocking the latter with high-affinity ligands may inhibit infection. DC-SIGN, a C-type lectin receptor expressed by immature dendritic cells and macrophages, mediates human immunodeficiency virus (HIV) infection by recognizing mannose clusters on the HIV-1 gp120 envelope glycoprotein. Mannosylated glycodendrimers act as HIV entry inhibitors thanks to their ability to block this receptor. Previously, an amphoteric, but prevailingly cationic polyamidoamine named AGMA1 proved effective as infection inhibitor for several heparan sulfate proteoglycan-dependent viruses, such …
Self-Ordering Secondary Structure of d- and l-Arginine-Derived Polyamidoamino Acids
This paper reports on synthesis, acid–base properties and pH-dependent structuring in water of d-, l- and d,l-ARGO7, bioinspired polymers obtained by polyaddition of the corresponding arginine stereoisomers with N,N′-methylenebis(acrylamide). The circular dichroism spectra of d- and l-ARGO7 showed a peak at 228 nm and quickly and reversibly responded to pH changes, but were nearly unaffected by temperature, ionic strength, and denaturating agents. Theoretical modeling studies of L-ARGO7 showed that it assumed a folded structure. Intramolecular interactions led to transoid arrangements of the main chain reminiscent of the protein hairpin motif. Torsion angles showed a quite similar distribut…
Poly-l-Lactic Acid Nanofiber-Polyamidoamine Hydrogel Composites: Preparation, Properties, and Preliminary Evaluation as Scaffolds for Human Pluripotent Stem Cell Culturing.
Electrospun poly-l-lactic acid (PLLA) nanofiber mats carrying surface amine groups, previously introduced by nitrogen atmospheric pressure nonequilibrium plasma, are embedded into aqueous solutions of oligomeric acrylamide-end capped AGMA1, a biocompatible polyamidoamine with arg-gly-asp (RGD)-reminiscent repeating units. The resultant mixture is finally cured giving PLLA-AGMA1 hydrogel composites that absorb large amounts of water and, in the swollen state, are translucent, soft, and pliable, yet as strong as the parent PLLA mat. They do not split apart from each other when swollen in water and remain highly flexible and resistant, since the hydrogel portion is covalently grafted onto the …
Hetero-difunctional dimers as building blocks for the synthesis of poly(amidoamine)s with hetero-difunctional chain terminals and their derivatives
This article reports on a simple and straightforward preparation method of poly(amidoamine)s (PAAs) with hetero-difunctional chain ends as well as of several up to now hardly obtainable PAA derivatives of biotechnological interest, such as for instance PAAs of controlled molecular weight and narrow polydispersity mono-functionalized at one end with an acrylamide group, PAAs with star-like molecular architecture, graft-PAA-protein conjugates, “tadpole-like” PAA conjugates with hydrophobic moieties able to self assemble into nanoparticles in aqueous media. The key step was to design suitable building blocks consisting of hetero-difunctional dimers (HDDs). In particular, the HDDs considered we…
L -lysine and EDTA polymer mimics as resins for the quantitative and reversible removal of heavy metal ion water pollutants
Traditional precipitation methods for inorganic micropollutant removal from waters are increasingly being replaced by sorption methods based on both natural and synthetic materials. In this context, two novel effective heavy metal ions absorbers are presented. These resins, LYMA and LMT85, were crosslinked poly(amidoamine)s carrying amine and carboxyl groups in their repeating units. In particular, the LYMA-repeating unit contains one carboxyl and two amine groups and is a mimic of L-lysine, whereas LMT85 contains two amine and five carboxyl groups and is a mimic of EDTA. Both resins were prepared at moderate cost by simple eco-friendly procedures. The heavy metal ion set adopted as benchma…
Use of poly(amidoamine) drug conjugates for the delivery of antimalarials to Plasmodium
Current malaria therapeutics demands strategies able to selectively deliver drugs to Plasmodium-infected red blood cells (pRBCs) in order to limit the appearance of parasite resistance. Here, the poly(amidoamines) AGMA1 and ISA23 have been explored for the delivery of antimalarial drugs to pRBCs. AGMA1 has antimalarial activity per se as shown by its inhibition of the in vitro growth of Plasmodium falciparum, with an IC50 of 13.7 μM. Fluorescence-assisted cell sorting data and confocal fluorescence microscopy and transmission electron microscopy images indicate that both polymers exhibit preferential binding to and internalization into pRBCs versus RBCs, and subcellular targeting to the par…
Amino acid-deriving chiral polymers with potential for biotechnological applications
.