0000000000092574
AUTHOR
J. W. Den Herder
TES microcalorimeter for IXO: From focal plane to anticoincidence detector
The high resolution spectroscopy provides a unique technique to extract fundamental information in X-ray Astrophysics and Cosmology. In order to exploit at the best the capability of carrying out spectroscopy of faint sources, great care must be taken to reduce the background in the main detector. In this paper, we will present the working principle of a TES (Transition Edge Sensor) Microcalorimeter, its application for fine spectroscopy and a novel anticoincidence technique , based itself on a TES detector. Recent results from the first sample of the IXO-anticoincidence detector will be also shown.
The Large Area Detector of LOFT: the Large Observatory for X-ray Timing
LOFT (Large Observatory for X-ray Timing) is one of the five candidates that were considered by ESA as an M3 mission (with launch in 2022-2024) and has been studied during an extensive assessment phase. It is specifically designed to perform fast X-ray timing and probe the status of the matter near black holes and neutron stars. Its pointed instrument is the Large Area Detector (LAD), a 10 m 2 -class instrument operating in the 2-30keV range, which holds the capability to revolutionise studies of variability from X-ray sources on the millisecond time scales. The LAD instrument has now completed the assessment phase but was not down-selected for launch. However, during the assessment, most o…
The filter wheel and filters development for the X-IFU instruments onboard Athena
Athena is the large mission selected by ESA in 2013 to investigate the science theme “Hot and Energetic Universe” and presently scheduled for launch in 2028. One of the two instruments located at the focus of the 12 m-long Athena telescope is the X-ray Integral Field Unit (X-IFU). This is an array of TES microcalorimeters that will be operated at temperatures of 50 mK in order to perform high resolution spectroscopy with an energy resolution down to 2.5 eV at energies < 7 keV. In order to cope with the large dynamical range of X-ray fluxes spanned by the celestial objects Athena will be observing, the X-IFU will be equipped with a filter wheel. This will allow the user to fine tune the i…
The x-ray microcalorimeter spectrometer onboard Athena
Trabajo presentado a la conferencia: "Space Telescopes and Instrumentation: Ultraviolet to Gamma Ray" celebrada en Amsterdam (Holanda) el 1 de julio de 2012.-- et al.
The Large Observatory For x-ray Timing
The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final down-selection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supra-nuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m 2 effective area, 2-30 keV, 240 eV spectral resolution, 1 deg collimated field of view) and a WideFi…
The focal plane assembly for the Athena X-ray Integral Field Unit instrument
This paper summarizes a preliminary design concept for the focal plane assembly of the X-ray Integral Field Unit on the Athena spacecraft, an imaging microcalorimeter that will enable high spectral resolution imaging and point-source spectroscopy. The instrument's sensor array will be a ~ 3840-pixel transition edge sensor (TES) microcalorimeter array, with a frequency domain multiplexed SQUID readout system allowing this large-format sensor array to be operated within the thermal constraints of the instrument's cryogenic system. A second TES detector will be operated in close proximity to the sensor array to detect cosmic rays and secondary particles passing through the sensor array for off…