0000000000092686

AUTHOR

Jean-philippe Rolin

showing 12 related works from this author

Real Algebraic Geometry

2011

144 Pages; Cet ouvrage constitue les actes de la conférence de Géométrie Algébrique Réelle qui a eu lieu à Rennes du 20 au 24 Juin 2011

MSC 14Pxx[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG]GéométrieRéelleAlgébrique[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]ComputingMilieux_MISCELLANEOUS[ MATH.MATH-AG ] Mathematics [math]/Algebraic Geometry [math.AG]
researchProduct

Multisummability for generalized power series

2022

We develop multisummability, in the positive real direction, for generalized power series with natural support, and we prove o-minimality of the expansion of the real field by all multisums of these series. This resulting structure expands both $\mathbb{R}_{\mathcal{G}}$ and the reduct of $\mathbb{R}_{\mathrm{an}^*}$ generated by all convergent generalized power series with natural support; in particular, its expansion by the exponential function defines both the Gamma function on $(0,\infty)$ and the Zeta function on $(1,\infty)$.

Mathematics - Classical Analysis and ODEsGeneral MathematicsClassical Analysis and ODEs (math.CA)FOS: Mathematics[MATH] Mathematics [math]Mathematics - LogicLogic (math.LO)Primary 40C10 03C64 26E10 Secondary 30D60
researchProduct

Construction of O-minimal Structures from Quasianalytic Classes

2012

I present the method of constructing o-minimal structures based on local reduction of singularities for quasianalytic classes.

Reduction (complexity)Pure mathematicsFormal power seriesMathematics::Complex VariablesMathematics::Classical Analysis and ODEsGravitational singularityHardy fieldMathematics
researchProduct

Nature log-analytique du volume des sous-analytiques

2000

Using a preparation theorem for subanalytic functions and Lipschitz stratification for compact subanalytic sets we prove that volumes of slices of globally subanalytic sets and density have a log-analytic nature. We also prove that the set of parameters for which the volume of fiber is finite is globally subanalytic.

Set (abstract data type)Mathematics::LogicMathematics::Algebraic GeometryMathematics::Complex VariablesFiber (mathematics)General MathematicsMathematical analysisLipschitz continuityStratification (mathematics)MathematicsVolume (compression)Illinois Journal of Mathematics
researchProduct

Generalised power series solutions of sub-analytic differential equations

2006

Abstract We show that if a solution y ( x ) of a sub-analytic differential equation admits an asymptotic expansion ∑ i = 1 ∞ c i x μ i , μ i ∈ R + , then the exponents μ i belong to a finitely generated semi-group of R + . We deduce a similar result for the components of non-oscillating trajectories of real analytic vector fields in dimension n. To cite this article: M. Matusinski, J.-P. Rolin, C. R. Acad. Sci. Paris, Ser. I 342 (2006).

Power seriesMathematics::Dynamical Systems[ MATH.MATH-CA ] Mathematics [math]/Classical Analysis and ODEs [math.CA]Differential equationHigh Energy Physics::Lattice010102 general mathematicsMathematical analysis06 humanities and the artsGeneral Medicine[MATH.MATH-CA]Mathematics [math]/Classical Analysis and ODEs [math.CA]0603 philosophy ethics and religion01 natural sciencesDimension (vector space)060302 philosophyVector fieldFinitely-generated abelian group0101 mathematicsAsymptotic expansionTrajectory (fluid mechanics)Mathematics
researchProduct

The Fatou coordinate for parabolic Dulac germs

2017

We study the class of parabolic Dulac germs of hyperbolic polycycles. For such germs we give a constructive proof of the existence of a unique Fatou coordinate, admitting an asymptotic expansion in the power-iterated log scale.

Pure mathematicsMonomialClass (set theory)Mathematics::Dynamical SystemsConstructive proofLogarithmTransseries[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]orbitsDulac germAsymptotic expansionDynamical Systems (math.DS)01 natural sciencesMSC: 37C05 34C07 30B10 30B12 39A06 34E05 37C10 37C1537C05 34C07 30B10 30B12 39A06 34E05 37C10 37C15Mathematics::Algebraic GeometryFOS: Mathematics0101 mathematicsMathematics - Dynamical SystemsMathematicsDulac germ ; Fatou coordinate ; Embedding in a flow ; Asymptotic expansion ; TransseriesdiffeomorphismsMathematics::Complex VariablesApplied Mathematics010102 general mathematicsFatou coordinate010101 applied mathematicsclassificationnormal formsepsilon-neighborhoodsEmbedding in a flowAsymptotic expansionAnalysis
researchProduct

Linearization of complex hyperbolic Dulac germs

2021

We prove that a hyperbolic Dulac germ with complex coefficients in its expansion is linearizable on a standard quadratic domain and that the linearizing coordinate is again a complex Dulac germ. The proof uses results about normal forms of hyperbolic transseries from another work of the authors.

Pure mathematicsMathematics::Dynamical SystemsMathematics::Complex VariablesApplied Mathematics010102 general mathematicsMathematics::Classical Analysis and ODEsDynamical Systems (math.DS)01 natural sciencesDomain (mathematical analysis)Dulac germs and series ; Hyperbolic fixed point ; Linearization ; Koenigs' sequenceQuadratic equationLinearization0103 physical sciencesFOS: MathematicsGerm010307 mathematical physics0101 mathematicsMathematics - Dynamical SystemsAnalysisMathematics
researchProduct

Oscillatory integrals and fractal dimension

2021

Theory of singularities has been closely related with the study of oscillatory integrals. More precisely, the study of critical points is closely related to the study of asymptotic of oscillatory integrals. In our work we investigate the fractal properties of a geometrical representation of oscillatory integrals. We are motivated by a geometrical representation of Fresnel integrals by a spiral called the clothoid, and the idea to produce a classification of singularities using fractal dimension. Fresnel integrals are a well known class of oscillatory integrals. We consider oscillatory integral $$ I(\tau)=\int_{; ; \mathbb{; ; R}; ; ^n}; ; e^{; ; i\tau f(x)}; ; \phi(x) dx, $$ for large value…

Box dimensionGeneral Mathematics010102 general mathematicsMathematical analysisPhase (waves)Resolution of singularitiesOscillatory integral ; Box dimension ; Minkowski content ; Critical points ; Newton diagramCritical points01 natural sciencesFractal dimensionCritical point (mathematics)Oscillatory integralAmplitudeDimension (vector space)Mathematics - Classical Analysis and ODEsMinkowski contentClassical Analysis and ODEs (math.CA)FOS: Mathematics0101 mathematicsMinkowski contentOscillatory integralNewton diagram[MATH]Mathematics [math]fractal dimension; box dimension; oscillatory integrals; theory of singularitiesMathematics
researchProduct

Théorème de Gabrielov et fonctions log-exp-algébriques

1997

Resume Nous obtenons le theoreme de Wilkie sur les fonctions log-exp-algebriques du theoreme du complementaire ≪ explicite ≫ de Gabrielov, et de notre presentation geometrique du theoreme de van den Dries, Macintyre et Marker sur les fonctions log-exp-analytiques.

Mathematics::LogicPure mathematicsAnalytic geometryMathematics::Complex VariablesMathematics::Number TheoryMathematics::History and OverviewGeneral MedicineMathematicsComptes Rendus de l'Académie des Sciences - Series I - Mathematics
researchProduct

Quasianalytic Denjoy-Carleman classes and o-minimality

2003

We show that the expansion of the real field generated by the functions of a quasianalytic Denjoy-Carleman class is model complete and o-minimal, provided that the class satisfies certain closure conditions. Some of these structures do not admit analytic cell decomposition, and they show that there is no largest o-minimal expansion of the real field.

CombinatoricsClass (set theory)Mathematics::Complex VariablesApplied MathematicsGeneral MathematicsMathematics::Classical Analysis and ODEsClosure (topology)Resolution of singularitiesCell decompositionMathematicsReal fieldJournal of the American Mathematical Society
researchProduct

Normal forms and embeddings for power-log transseries

2016

First return maps in the neighborhood of hyperbolic polycycles have their asymptotic expansion as Dulac series, which are series with power-logarithm monomials. We extend the class of Dulac series to an algebra of power-logarithm transseries. Inside this new algebra, we provide formal normal forms of power-log transseries and a formal embedding theorem. The questions of classifications and of embeddings of germs into flows of vector fields are common problems in dynamical systems. Aside from that, our motivation for this work comes from fractal analysis of orbits of first return maps around hyperbolic polycycles. This is a joint work with Pavao Mardešić, Jean-Philippe Rolin and Vesna Župano…

Mathematics::Dynamical Systems[ MATH.MATH-CA ] Mathematics [math]/Classical Analysis and ODEs [math.CA]TransseriesGeneral Mathematics[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS][ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS]MSC: 34C20 37C10 39B12 46A19 28A75 58K50 26A12[MATH.MATH-CA]Mathematics [math]/Classical Analysis and ODEs [math.CA]Normal forms01 natural sciencesIteration theory ; Dulac map ; normal forms ; embedding in a flow ; transseries.0101 mathematicsAlgebra over a fieldMathematicsSeries (mathematics)Dulac mapIteration theoryformal normal forms parabolic transseriesMathematics::History and Overview010102 general mathematicsPower (physics)010101 applied mathematicsAlgebraEmbeddingEmbedding in a flowIteration theoryAdvances in Mathematics
researchProduct

Une structure o-minimale sans décomposition cellulaire

2008

Resume Nous construisons une extension o-minimale du corps des nombres reels qui n'admet pas la propriete de decomposition cellulaire en classe C ∞ . Pour citer cet article : O. Le Gal, J.-P. Rolin, C. R. Acad. Sci. Paris, Ser. I 346 (2008).

010101 applied mathematicsCombinatorics010102 general mathematicsCell structureGeneral MedicineDecomposition method (constraint satisfaction)0101 mathematicsAlgebraic number field01 natural sciencesMathematicsComptes Rendus Mathematique
researchProduct