6533b7cefe1ef96bd1257b28
RESEARCH PRODUCT
Multisummability for generalized power series
Jean-philippe RolinTamara ServiPatrick Speisseggersubject
Mathematics - Classical Analysis and ODEsGeneral MathematicsClassical Analysis and ODEs (math.CA)FOS: Mathematics[MATH] Mathematics [math]Mathematics - LogicLogic (math.LO)Primary 40C10 03C64 26E10 Secondary 30D60description
We develop multisummability, in the positive real direction, for generalized power series with natural support, and we prove o-minimality of the expansion of the real field by all multisums of these series. This resulting structure expands both $\mathbb{R}_{\mathcal{G}}$ and the reduct of $\mathbb{R}_{\mathrm{an}^*}$ generated by all convergent generalized power series with natural support; in particular, its expansion by the exponential function defines both the Gamma function on $(0,\infty)$ and the Zeta function on $(1,\infty)$.
year | journal | country | edition | language |
---|---|---|---|---|
2022-01-01 |