0000000000093161
AUTHOR
Michael Maczka
Ants Data from How to fight multiple enemies: target-specific chemical defences in an aposematic moth
Animals have evolved different defensive strategies to survive predation, among which chemical defences are particularly widespread and diverse. Here we investigate the function of chemical defence diversity, hypothesizing that such diversity has evolved as a response to multiple enemies. The aposematic wood tiger moth (Arctia plantaginis) displays conspicuous hindwing coloration and secretes distinct defensive fluids from their thoracic glands and abdomen. We presented the two defensive fluids from lab-reared moths to two biologically relevant predators, birds and ants, and measured their reaction in controlled bioassays (no information on colour was provided). We found that defensive flui…
How to fight multiple enemies : target-specific chemical defences in an aposematic moth
Animals have evolved different defensive strategies to survive predation, among which chemical defences are particularly widespread and diverse. Here we investigate the function of chemical defence diversity, hypothesizing that such diversity has evolved as a response to multiple enemies. The aposematic wood tiger moth (Arctia plantaginis) displays conspicuous hindwing coloration and secretes distinct defensive fluids from its thoracic glands and abdomen. We presented the two defensive fluids from laboratory-reared moths to two biologically relevant predators, birds and ants, and measured their reaction in controlled bioassays (no information on colour was provided). We found that defensive…
Bird Data from How to fight multiple enemies: target-specific chemical defences in an aposematic moth
Animals have evolved different defensive strategies to survive predation, among which chemical defences are particularly widespread and diverse. Here we investigate the function of chemical defence diversity, hypothesizing that such diversity has evolved as a response to multiple enemies. The aposematic wood tiger moth (Arctia plantaginis) displays conspicuous hindwing coloration and secretes distinct defensive fluids from their thoracic glands and abdomen. We presented the two defensive fluids from lab-reared moths to two biologically relevant predators, birds and ants, and measured their reaction in controlled bioassays (no information on colour was provided). We found that defensive flui…
Supplementary Methods and Results from How to fight multiple enemies: target-specific chemical defences in an aposematic moth
Supplementary methods and supplementary results
Video from How to fight multiple enemies: target-specific chemical defences in an aposematic moth
Video in slow motion showing the reaction of a blue tit to the chemical defences of a wood tiger moth
Data from: How to fight multiple enemies: target-specific chemical defences in an aposematic moth
Animals have evolved different defensive strategies to survive predation, among which chemical defences are particularly widespread and diverse. Here we investigate the function of chemical defence diversity, hypothesising that such diversity has evolved as a response to multiple enemies. The aposematic wood tiger moth (Arctia plantaginis) displays conspicuous hindwing colouration and secretes two distinct defensive fluids, from their thoracic glands and abdomen. We presented fluids from lab-reared moths to two biologically relevant predators, birds and ants, and measured their reaction in controlled bioassays (no information on colour was provided). We found that defensive fluids are targe…
Figure S4 from How to fight multiple enemies: target-specific chemical defences in an aposematic moth
Differences in composition between the ‘neck’ (a) and abdominal (b) fluids of wood tiger moths. Neck fluids have a richer chemical profile, with their main compounds being carboxylic acids (see Table II in Supplementary Material 5). Photos: Janne Valkonen.
Figure S5 from How to fight multiple enemies: target-specific chemical defences in an aposematic moth
Bird (a, b) and ant (c) response to pure pyrazine. Birds ate fewer oats soaked with 2-sec-butyl-3-methoxypyrazine (a; both in a concentration of 1ng/µl (P) and 0.1ng/µl (Pb)). Also, they tended to have longer latencies to approach pyrazine-soaked oats (both concentrations pooled) than control oats (b). Ant response to 2-sec-butyl-3-methoxypyrazine was, in contrast, not different from that to the control sugar solution (c).
Figure S3 from How to fight multiple enemies: target-specific chemical defences in an aposematic moth
Results of GC-MS analysis using Selected Ion Monitoring of ions 124, 138 and 151 of the neck fluid of a single moth. Top row shows total abundance of all three ions.