0000000000093472

AUTHOR

Mikko Ylilauri

showing 9 related works from this author

Full and Partial Agonism of Ionotropic Glutamate Receptors Indicated by Molecular Dynamics Simulations

2011

Ionotropic glutamate receptors (iGluRs) are synaptic proteins that facilitate signal transmission in the central nervous system. Extracellular iGluR cleft closure is linked to receptor activation; however, the mechanism underlying partial agonism is not entirely understood. Full agonists close the bilobed ligand-binding domain (LBD), while antagonists prevent closure; the transmembrane ion channel either opens or stays closed, respectively. Although some bulky partial agonists produce intermediate iGluR-LBD closure, the available crystal structures also imply that the cleft can be shut with certain partial agonists. Recently, we have shown that the iGluR-LBD closure stage can be recreated b…

Binding SitesProtein ConformationStereochemistryChemistryGeneral Chemical EngineeringGlutamate receptorHydrogen BondingGeneral ChemistryMolecular Dynamics SimulationLibrary and Information SciencesNeurotransmissionCrystallography X-RayLigandsReceptors Ionotropic GlutamateLigand (biochemistry)Partial agonistTransmembrane proteinComputer Science ApplicationsBiophysicsReceptorIon channelProtein BindingIonotropic effectJournal of Chemical Information and Modeling
researchProduct

Molecular and ecological signs of mitochondrial adaptation: consequences for introgression?

2013

The evolution of the mitochondrial genome and its potential adaptive impact still generates vital debates. Even if mitochondria have a crucial functional role, as they are the main cellular energy suppliers, mitochondrial DNA (mtDNA) introgression is common in nature, introducing variation in populations upon which selection may act. Here we evaluated whether the evolution of mtDNA in a rodent species affected by mtDNA introgression is explained by neutral expectations alone. Variation in one mitochondrial and six nuclear markers in Myodes glareolus voles was examined, including populations that show mtDNA introgression from its close relative, Myodes rutilus. In addition, we modelled prote…

MaleMitochondrial DNANuclear geneMolecular Sequence DataIntrogressionMitochondrionDNA MitochondrialEvolution MolecularGeneticsAnimalsSelection GeneticEcosystemPhylogenyGenetics (clinical)Local adaptationGeneticsNatural selectionbiologyArvicolinaeEcologyCytochrome bta1182Genetic VariationCytochromes bbiology.organism_classificationAdaptation PhysiologicalMitochondriata1181Original ArticleRutilusHeredity
researchProduct

Molecular mechanism of T-cell protein tyrosine phosphatase (TCPTP) activation by mitoxantrone.

2013

T-cell protein tyrosine phosphatase (TCPTP) is a ubiquitously expressed non-receptor protein tyrosine phosphatase. It is involved in the negative regulation of many cellular signaling pathways. Thus, activation of TCPTP could have important therapeutic applications in diseases such as cancer and inflammation. We have previously shown that the α-cytoplasmic tail of integrin α1β1 directly binds and activates TCPTP. In addition, we have identified in a large-scale high-throughput screen six small molecules that activate TCPTP. These small molecule activators include mitoxantrone and spermidine. In this study, we have investigated the molecular mechanism behind agonist-induced TCPTP activation.…

SpermidineProtein tyrosine phosphataseBiochemistryAnalytical Chemistry0302 clinical medicinePhosphorylationDatabases Protein0303 health sciencesProtein Tyrosine Phosphatase Non-Receptor Type 2biologyChemistrySmall molecule3. Good healthCell biologyisothermal titration calorimetryMolecular Docking Simulationmolecular dynamics simulation030220 oncology & carcinogenesis/dk/atira/pure/sustainabledevelopmentgoals/good_health_and_well_beingThermodynamicsHydrophobic and Hydrophilic InteractionsProtein BindingSignal TransductionCell signalingintegrinIntegrinPhosphataseStatic ElectricityBiophysicsAntineoplastic AgentsMolecular Dynamics Simulationta3111mitoxantroneIntegrin alpha1beta1Small Molecule Libraries03 medical and health sciencesSDG 3 - Good Health and Well-beingdifferential scanning fluorimetryHumansBinding siteMolecular Biology030304 developmental biologyT-cell protein tyrosine phosphataseta1182ta3122In vitroProtein Structure TertiaryKineticsCytoplasmbiology.proteinMitoxantronePeptidesBiochimica et Biophysica Acta: Proteins and Proteomics
researchProduct

MMGBSA As a Tool To Understand the Binding Affinities of Filamin–Peptide Interactions

2013

Filamins (FLN) are large dimeric proteins that cross-link actin and work as important scaffolds in human cells. FLNs consist of an N-terminal actin-binding domain followed by 24 immunoglobulin-like domains (FLN1-24). FLN domains are divided into four subgroups based on their amino acid sequences. One of these subgroups, including domains 4, 9, 12, 17, 19, 21, and 23, shares a similar ligand-binding site between the β strands C and D. Several proteins, such as integrins β2 and β7, glycoprotein Ibα (GPIbα), and migfilin, have been shown to bind to this site. Here, we computationally estimated the binding free energies of filamin A (FLNa) subunits with bound peptides using the molecular mechan…

Integrin beta ChainsFilaminsGeneral Chemical EngineeringIntegrinPeptidePlasma protein bindingMolecular Dynamics SimulationLibrary and Information SciencesBiologyLigandsFilaminta3111Protein Structure SecondaryProtein structureProtein Interaction MappingHumansFLNAProtein Interaction Domains and MotifsBinding siteta116chemistry.chemical_classificationBinding Sitesta1182General ChemistryComputer Science ApplicationsAmino acidCytoskeletal ProteinsCrystallographyPlatelet Glycoprotein GPIb-IX ComplexchemistryCD18 AntigensBiophysicsbiology.proteinThermodynamicsPeptidesCell Adhesion MoleculesAlgorithmsProtein BindingJournal of Chemical Information and Modeling
researchProduct

Structural Mechanism of N-Methyl-D-Aspartate Receptor Type 1 Partial Agonism

2012

N-methyl-D-aspartate (NMDA) receptors belong to a family of ionotropic glutamate receptors that contribute to the signal transmission in the central nervous system. NMDA receptors are heterotetramers that usually consist of two GluN1 and GluN2 monomers. The extracellular ligand-binding domain (LBD) of a monomer is comprised of discontinuous segments that form the functional domains D1 and D2. While the binding of a full agonist glycine to LBD of GluN1 is linked to cleft closure and subsequent ion-channel opening, partial agonists are known to activate the receptor only sub-maximally. Although the crystal structures of the LBD of related GluA2 receptor explain the mechanism for the partial a…

AgonistProtein Structuremedicine.drug_classGlycineMolecular ConformationBiophysicslcsh:MedicineMolecular Dynamics SimulationLigandsta3111Receptors N-Methyl-D-AspartateBiochemistryBiophysics Simulationsta3112Partial agonistIon ChannelsChemical BiologyMacromolecular Structure AnalysismedicineBiomacromolecule-Ligand Interactionslcsh:ScienceReceptorBiologyta116Ion channelCrystallographyMultidisciplinaryChemistrylcsh:Rta1182Glutamate receptorProteinsComputational BiologyNeurotransmittersProtein Structure TertiaryTransmembrane ProteinsBiochemistryCycloserineBiophysicsNMDA receptorLigand-gated ion channellcsh:Qhormones hormone substitutes and hormone antagonistsProtein BindingResearch ArticleNeuroscienceIonotropic effectPLoS ONE
researchProduct

A novel structural unit in the N-terminal region of filamins.

2014

Immunoglobulin-like (Ig) domains are a widely expanded superfamily that act as interaction motifs or as structural spacers in multidomain proteins. Vertebrate filamins (FLNs), which are multifunctional actin-binding proteins, consist of 24 Ig domains. We have recently discovered that in the C-terminal rod 2 region of FLN, Ig domains interact with each other forming functional domain pairs, where the interaction with signaling and transmembrane proteins is mechanically regulated by weak actomyosin contraction forces. Here, we investigated if there are similar inter-domain interactions around domain 4 in the N-terminal rod 1 region of FLN. Protein crystal structures revealed a new type of dom…

Models MolecularEGF-like domainProtein ConformationFilaminsProtein domainMolecular Sequence DataBeta sheetmacromolecular substancesBiologyCrystallography X-RayBiochemistryProtein–protein interactionHAMP domainProtein structureHumansAmino Acid SequenceMolecular BiologyNuclear Magnetic Resonance Biomolecularta1182Cell BiologyProtein Structure TertiaryCrystallographyStructural biologyProtein Structure and FoldingBiophysicsBinding domainProtein BindingThe Journal of biological chemistry
researchProduct

Structural Mechanism of N-Methyl-D-Aspartate Receptor Type 1 Partial Agonism

2012

N-methyl-D-aspartate (NMDA) receptors belong to a family of ionotropic glutamate receptors that contribute to the signal transmission in the central nervous system. NMDA receptors are heterotetramers that usually consist of two GluN1 and GluN2 monomers. The extracellular ligand-binding domain (LBD) of a monomer is comprised of discontinuous segments that form the functional domains D1 and D2. While the binding of a full agonist glycine to LBD of GluN1 is linked to cleft closure and subsequent ion-channel opening, partial agonists are known to activate the receptor only sub-maximally. Although the crystal structures of the LBD of related GluA2 receptor explain the mechanism for the partial a…

glutamate receptorglutamaattireseptoripartial agonistmolekyylidynamiikkapartiaalinen agonistihormones hormone substitutes and hormone antagonists
researchProduct

Biosensorihiivasolujen kehittäminen ympäristödiagnostiikkaan

2007

kylmäkäsittelyhiivaympäristömyrkytbiosensorithormonaaliset vaikutuksetsäilyvyys
researchProduct

Effect of ligand-binding on protein function

2014

tietokonesimulointifilamiinitliganditsitoutuminenionotrooppiset glutamaattireseptoritfilaminpeptidiliganditmolecular dynamicsionotropic glutamate receptorlääkesuunnitteluFLNaiGluRlaskennallinen tiedelaskennalliset menetelmätmolekyylidynamiikkaTCPTPsimulointiproteiinitbinding free energyT-cell protein tyrosine phosphatase
researchProduct