6533b829fe1ef96bd128a5b8
RESEARCH PRODUCT
Molecular mechanism of T-cell protein tyrosine phosphatase (TCPTP) activation by mitoxantrone.
Mikko YlilauriJuha A. E. MäättäUlla PentikäinenJarmo KäpyläOlli T. PentikäinenJohanna IvaskaJohanna IvaskaElisa M. NurminenElina MattilaElina MattilaSanna Niinivehmassubject
SpermidineProtein tyrosine phosphataseBiochemistryAnalytical Chemistry0302 clinical medicinePhosphorylationDatabases Protein0303 health sciencesProtein Tyrosine Phosphatase Non-Receptor Type 2biologyChemistrySmall molecule3. Good healthCell biologyisothermal titration calorimetryMolecular Docking Simulationmolecular dynamics simulation030220 oncology & carcinogenesis/dk/atira/pure/sustainabledevelopmentgoals/good_health_and_well_beingThermodynamicsHydrophobic and Hydrophilic InteractionsProtein BindingSignal TransductionCell signalingintegrinIntegrinPhosphataseStatic ElectricityBiophysicsAntineoplastic AgentsMolecular Dynamics Simulationta3111mitoxantroneIntegrin alpha1beta1Small Molecule Libraries03 medical and health sciencesSDG 3 - Good Health and Well-beingdifferential scanning fluorimetryHumansBinding siteMolecular Biology030304 developmental biologyT-cell protein tyrosine phosphataseta1182ta3122In vitroProtein Structure TertiaryKineticsCytoplasmbiology.proteinMitoxantronePeptidesdescription
T-cell protein tyrosine phosphatase (TCPTP) is a ubiquitously expressed non-receptor protein tyrosine phosphatase. It is involved in the negative regulation of many cellular signaling pathways. Thus, activation of TCPTP could have important therapeutic applications in diseases such as cancer and inflammation. We have previously shown that the α-cytoplasmic tail of integrin α1β1 directly binds and activates TCPTP. In addition, we have identified in a large-scale high-throughput screen six small molecules that activate TCPTP. These small molecule activators include mitoxantrone and spermidine. In this study, we have investigated the molecular mechanism behind agonist-induced TCPTP activation. By combining several molecular modeling and biochemical techniques, we demonstrate that α1-peptide and mitoxantrone activate TCPTP via direct binding to the catalytic domain, whereas spermidine does not interact with the catalytic domain of TCPTP in vitro. Furthermore, we have identified a hydrophobic groove surrounded by negatively charged residues on the surface of TCPTP as a putative binding site for the α1-peptide and mitoxantrone. Importantly, these data have allowed us to identify a new molecule that binds to TCPTP, but interestingly cannot activate its phosphatase activity. Accordingly, we describe here mechanism of TCPTP activation by mitoxantrone, the cytoplasmic tail of α1-integrin, and a mitoxantrone-like molecule at the atomic level. These data provide invaluable insight into the development of novel TCPTP activators, and may facilitate the rational discovery of small-molecule cancer therapeutics.
year | journal | country | edition | language |
---|---|---|---|---|
2013-01-01 | Biochimica et Biophysica Acta: Proteins and Proteomics |