"RKKH" peptides from the snake venom metalloproteinase of Bothrops jararaca bind near the metal ion-dependent adhesion site of the human integrin alpha(2) I-domain.
Integrin alpha(1)beta(1) and alpha(2)beta(1) are the major cellular receptors for collagen, and collagens bind to these integrins at the inserted I-domain in their alpha subunit. We have previously shown that a cyclic peptide derived from the metalloproteinase domain of the snake venom protein jararhagin blocks the collagen-binding function of the alpha(2) I-domain. Here, we have optimized the structure of the peptide and identified the site where the peptide binds to the alpha(2) I-domain. The peptide sequence Arg-Lys-Lys-His is critical for recognition by the I-domain, and five negatively charged residues surrounding the "metal ion-dependent adhesion site" (MIDAS) of the I-domain, when mu…
Integrin-mediated Cell Adhesion to Type I Collagen Fibrils
In the integrin family, the collagen receptors form a structurally and functionally distinct subgroup. Two members of this subgroup, α1β1 and α2β1 integrins, are known to bind to monomeric form of type I collagen. However, in tissues type I collagen monomers are organized into large fibrils immediately after they are released from cells. Here, we studied collagen fibril recognition by integrins. By an immunoelectron microscopy method we showed that integrin α2I domain is able to bind to classical D-banded type I collagen fibrils. However, according to the solid phase binding assay, the collagen fibril formation appeared to reduce integrin α1I and α2I domain avidity to collagen and to lower …
Negative regulators of integrin activity
Integrins are heterodimeric transmembrane adhesion receptors composed of α- and β-subunits. They are ubiquitously expressed and have key roles in a number of important biological processes, such as development, maintenance of tissue homeostasis and immunological responses. The activity of integrins, which indicates their affinity towards their ligands, is tightly regulated such that signals inside the cell cruicially regulate the switching between active and inactive states. An impaired ability to activate integrins is associated with many human diseases, including bleeding disorders and immune deficiencies, whereas inappropriate integrin activation has been linked to inflammatory disorders…
Clustering induces a lateral redistribution of α2β1 integrin from membrane rafts to caveolae and subsequent protein kinase C-dependent internalization
Integrin alpha 2 beta 1 mediates the binding of several epithelial and mesenchymal cell types to collagen. The composition of the surrounding plasma membrane, especially caveolin-1- and cholesterol-containing membrane structures called caveolae, may be important to integrin signaling. On cell surface alpha 2 beta 1 integrin was located in the raft like membrane domain, rich in GPI-anchored proteins, rather than in caveolae. However, when antibodies were used to generate clusters of alpha 2 beta 1 integrin, they started to move laterally on cell surface along actin filaments. During the lateral movement small clusters fused together. Finally alpha 2 beta 1 integrin was found inside caveolae …
Integrin alpha(2)I domain recognizes type I and type IV collagens by different mechanisms.
The collagens are recognized by the alphaI domains of the collagen receptor integrins. A common structural feature in the collagen-binding alphaI domains is the presence of an extra helix, named helix alphaC. However, its participation in collagen binding has not been shown. Here, we have deleted the helix alphaC in the alpha(2)I domain and tested the function of the resultant recombinant protein (DeltaalphaCalpha(2)I) by using a real-time biosensor. The DeltaalphaCalpha(2)I domain had reduced affinity for type I collagen (430 +/- 90 nM) when compared with wild-type alpha(2)I domain (90 +/- 30 nM), indicating both the importance of helix alphaC in type I collagen binding and that the collag…
Distinct Recognition of Collagen Subtypes by α1β1 and α2β1Integrins
Two integrin-type collagen receptors, α1β1 and α2β1, are structurally very similar. However, cells can concomitantly express the both receptors and they might have independent functions. Here, Chinese hamster ovary (CHO) cells, which lack endogenous collagen receptors, were transfected with either α1 or α2 integrin cDNA. Cells were allowed to adhere to various collagen types and their integrin function was tested by observing the progression of cell spreading. The cells expressing α1β1 integrin could spread on collagen types I, III, IV, and V but not on type II, while α2β1 integrin could mediate cell spreading on collagen types I-V. Type XIII is a transmembrane collagen and its interaction …
Internalization of Echovirus 1 in Caveolae
ABSTRACT Echovirus 1 (EV1) is a human pathogen which belongs to the Picornaviridae family of RNA viruses. We have analyzed the early events of infection after EV1 binding to its receptor α2β1 integrin and elucidated the route by which EV1 gains access to the host cell. EV1 binding onto the cell surface and subsequent entry resulted in conformational changes of the viral capsid as demonstrated by sucrose gradient sedimentation analysis. After 15 min to 2 h postinfection (p.i.) EV1 capsid proteins were seen in vesicular structures that were negative for markers of the clathrin-dependent endocytic pathway. In contrast, immunofluorescence confocal microscopy showed that EV1, α2β1 integrin, and …
Molecular mechanism of T-cell protein tyrosine phosphatase (TCPTP) activation by mitoxantrone.
T-cell protein tyrosine phosphatase (TCPTP) is a ubiquitously expressed non-receptor protein tyrosine phosphatase. It is involved in the negative regulation of many cellular signaling pathways. Thus, activation of TCPTP could have important therapeutic applications in diseases such as cancer and inflammation. We have previously shown that the α-cytoplasmic tail of integrin α1β1 directly binds and activates TCPTP. In addition, we have identified in a large-scale high-throughput screen six small molecules that activate TCPTP. These small molecule activators include mitoxantrone and spermidine. In this study, we have investigated the molecular mechanism behind agonist-induced TCPTP activation.…
Mammary-derived growth inhibitor (MDGI) interacts with integrin α-subunits and suppresses integrin activity and invasion
The majority of mortality associated with cancer is due to formation of metastases from the primary tumor. Adhesion mediated by different integrin heterodimers has an important role during cell migration and invasion. Protein interactions with the β1-integrin cytoplasmic tail are known to influence integrin affinity for extracellular ligands, but regulating binding partners for the α-subunit cytoplasmic tails have remained elusive. In this study, we show that mammary-derived growth inhibitor (MDGI) (also known as FABP-3 or H-FABP) binds directly to the cytoplasmic tail of integrin α-subunits and its expression inhibits integrin activity. In breast cancer cell lines, MDGI expression correlat…
Integrin α2β1 Mediates Isoform-Specific Activation of p38 and Upregulation of Collagen Gene Transcription by a Mechanism Involving the α2 Cytoplasmic Tail
Two collagen receptors, integrins alpha1beta1 and alpha2beta1, can regulate distinct functions in cells. Ligation of alpha1beta1, unlike alpha2beta1, has been shown to result in recruitment of Shc and activation of the Ras/ERK pathway. To identify the downstream signaling molecules activated by alpha2beta1 integrin, we have overexpressed wild-type alpha2, or chimeric alpha2 subunit with alpha1 integrin cytoplasmic domain in human osteosarcoma cells (Saos-2) lacking endogenous alpha2beta1. The chimeric alpha2/alpha1 chain formed a functional heterodimer with beta1. In contrast to alpha2/alpha1 chimera, forced expression of alpha2 integrin resulted in upregulation of alpha1 (I) collagen gene …
Calpains promote α2β1 integrin turnover in nonrecycling integrin pathway
A novel virus- and integrin clustering–specific pathway diverts integrin from its normal endo/exocytic traffic to a nonrecycling degradative endosomal route. Clustering of α2β1 integrin causes redistribution of the integrin to perinuclear endosomes, leading to enhanced integrin turnover promoted by calpains.
A peptide inhibiting the collagen binding function of integrin alpha2I domain.
Integrin alpha2 subunit forms in the complex with the beta1 subunit a cell surface receptor binding extracellular matrix molecules, such as collagens and laminin-1. It is a receptor for echovirus-1, as well. Ligands are recognized by the special "inserted" domain (I domain) in the integrin alpha2 subunit. Venom from a pit viper, Bothrops jararaca, has been shown to inhibit the interaction of platelet alpha2beta1 integrin with collagen because of the action of a disintegrin/metalloproteinase named jararhagin. The finding that crude B. jararaca venom could prevent the binding of human recombinant ralpha2I domain to type I collagen led us to study jararhagin further. Synthetic peptides represe…
Integrin alpha 2 beta 1 promotes activation of protein phosphatase 2A and dephosphorylation of Akt and glycogen synthase kinase 3 beta.
The integrins are a large family of heterodimeric transmembrane receptors composed of α and β subunits (22). In addition to mediating cell-matrix interactions, integrins have been shown to activate intracellular signaling pathways which, in collaboration with growth factor-induced signals, regulate cellular functions (46). Some integrin signaling cascades are activated via the β subunit cytoplasmic domain, and they are therefore triggered by several integrin heterodimers. These signals include the activation of protein tyrosine kinases of the Src and focal adhesion kinase (FAK) families (9, 47). More-recent studies have revealed signaling events that are activated specifically by an α subun…
Competitive binding of Rab21 and p120RasGAP to integrins regulates receptor traffic and migration
P120RasGAP competes with Rab21 for binding to the cytoplasmic domain of integrin α-subunits, thereby promoting receptor escape from early endosomes and recycling to the plasma membrane.