0000000000094259

AUTHOR

C Lepore

Modelling of Rainfall Induced Landslides in Puerto Rico

research product

Modeling vegetation effects on hydrological and mechanical mechanisms of shallow landslides

Effects of vegetation in improving slope stability can be recognized on both hydrological and mechanical mechanisms. With regard to the hydrological effect, vegetation leads to lower porewater pressure and soil moisture due to interception by foliage of rainfall, which reduces the amount of water available for infiltration, or uptake by root system of soil moisture. With regard to the mechanical aspects, root system, due to their tensile strength and frictional or adhesive properties, reinforce the soil and thus increase the resistance of soil. This mechanical effect is at times the most significant and in slope stability analysis is taken into account by means of the apparent root cohesion…

research product

A spatially distributed and physically based tool to modelling rainfall-triggered landslides

Landslides are a serious threat to lives and property throughout the world. Over the last few years the need to provide consistent tools and support to decision-makers and land managers have led to significant progress in the analysis and understanding of the occurrence of landslides. The causes of landslides are varied. Multiple dynamic processes are involved in driving slope failures. One of these causes is prolonged rainfall, which affect slope stability in different ways. Water entering the ground beneath a slope always causes a rise of the piezometric surface, which in turn involves an increase of the pore-water pressure and a decrease of the soil shear resistance. For this reason, kno…

research product

Data Resolution Effects on Landslides Hazard and Susceptibility Assessment of Puerto Rico

research product

Rainfall Induced Landslides in Puerto Rico

Landslides are a major geologic hazard in the United States, typically triggered by rainfall, earthquakes, volcanoes and human activity. Rainfall-induced landslides are the most common type in the island of Puerto Rico, with one or two large events per year. We performed an island-wide determination of static landslide susceptibility and hazard assessment as well as dynamic modeling of rainfall-induced shallow landslides in a particular hydrologic basin. Based on statistical analysis of past landslides, we determined that reliable prediction of the susceptibility to landslides is strongly dependent on the resolution of the digital elevation model (DEM) employed and the reliability of the ra…

research product

Rainfall Induced Landslides in Puerto Rico

research product

Coupled stability and eco-hydrological model to predict shallow landslides

research product

A coupled stability and eco-hydrological model to predict shallow landslides

Knowledge of spatio-temporal dynamics of soil water content, groundwater and infiltration processes is of considerable importance for the understanding and prediction of landslides. Rainfall and consequent water infiltration affect slope stability in various ways, mainly acting on the pore pressure distribution whose increase causes a decrease of the shearing resistance of the soil. For such reasons rainfall and transient changes in the hydrological systems are considered the most common triggers of landslides. So far, the difficulty to monitor groundwater levels or soil moisture contents in unstable terrain have made modeling of landslide a complex issue. At the present, the availability o…

research product