0000000000094815

AUTHOR

M. Von Schmid

showing 9 related works from this author

Determination of the B(E3, 0+ → 3−)-excitation strength in octupole-correlated nuclei near A ≈224 by the means of Coulomb excitation at REX-ISOLDE

2013

The IS475 collaboration conducted Coulomb-excitation experiments with postaccelerated radioactive 220Rn and 224Ra beams at the REX-ISOLDE facility. The beam particles (Ebeam ≈ 2.83 MeV/u) were Coulomb excited using 60Ni, 114Cd, and 120Sn scattering targets. De-excitation γ-rays were detected employing the Miniball array and scattered particles were detected in a silicon detector. Exploiting the Coulomb-excitation code GOSIA for each nucleus several matrix elements could be obtained from the measured γ-ray yields. The extracted 3−||Ê3||0+ matrix element allows for the conclusion that, while 220Rn represents an octupole vibrational system, 224Ra has already substantial octupole correlations i…

PhysicsHistoryScatteringCoulomb excitationPhysics and Astronomy(all)[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Charged particleParticle detectorComputer Science ApplicationsEducationNuclear physics25.70.De; 27.90.+b; 23.20.Js/dk/atira/pure/subjectarea/asjc/3100Excited stateCoulombPhysics::Accelerator PhysicsAtomic physicsGround stateExcitationComputingMilieux_MISCELLANEOUS
researchProduct

Single-neutron orbits near 78 Ni: Spectroscopy of theN=49isotope 79 Zn

2015

Single-neutron states in the Z=30, N=49isotope 79Zn have been populated using the 78Zn(d,p)79Zn transfer reaction at REX-ISOLDE, CERN. The experimental setup allowed the combined detection of protons ejected in the reaction, and of γrays emitted by 79Zn. The analysis reveals that the lowest excited states populated in the reaction lie at approximately 1MeV of excitation, and involve neutron orbits above the N=50shell gap. From the analysis of γ-ray data and of proton angular distributions, characteristic of the amount of angular momentum transferred, a5/2+configuration was assigned to a state at 983keV. Comparison with large-scale-shell-model calculations supports a robust neutron N=50shell…

Nuclear reactionNuclear and High Energy PhysicsAngular momentumProtonAstrophysics::High Energy Astrophysical PhenomenaNuclear Theorygamma-Ray transitions[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesTransfer reactions0103 physical sciencesNuclear Physics - ExperimentNeutronNuclear structureNuclear Experiment010306 general physicsSpectroscopyComputingMilieux_MISCELLANEOUSN=50 shell closure[PHYS]Physics [physics]PhysicsElastic scatteringNUCLEIRICH ISOTOPES010308 nuclear & particles physicslcsh:QC1-999ELASTIC-SCATTERINGExcited stateAtomic physicsγ-Ray transitionsNucleonlcsh:PhysicsPhysics Letters B
researchProduct

Coulomb Excitation of (142) Xe

2017

5 pags., 2 figs. -- Open Access funded by Creative Commons Atribution Licence 4.0. -- Presented at the XXXV Mazurian Lakes Conference on Physics, Piaski, Poland, September 3–9, 2017.

PhysicsLarge Hadron ColliderSpectrometerta114010308 nuclear & particles physicsDetectorNuclear TheoryGeneral Physics and AstronomyksenonCoulomb excitation[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesxenonNuclear physicsnuclear physics0103 physical sciencesQuadrupolePhysics::Accelerator PhysicsNuclear Physics - ExperimentMAGIC (telescope)ydinfysiikkaNuclear ExperimentBeam (structure)
researchProduct

Enhanced Quadrupole and Octupole Strength in Doubly Magic Sn132

2018

The first 2+ and 3- states of the doubly magic nucleus Sn132 are populated via safe Coulomb excitation employing the recently commissioned HIE-ISOLDE accelerator at CERN in conjunction with the highly efficient MINIBALL array. The Sn132 ions are accelerated to an energy of 5.49 MeV/nucleon and impinged on a Pb206 target. Deexciting γ rays from the low-lying excited states of the target and the projectile are recorded in coincidence with scattered particles. The reduced transition strengths are determined for the transitions 0g.s.+→21+, 0g.s.+→31-, and 21+→31- in Sn132. The results on these states provide crucial information on cross-shell configurations which are determined within large-sca…

PhysicsLarge Hadron Collider010308 nuclear & particles physicsProjectileMonte Carlo methodGeneral Physics and AstronomyCoulomb excitation01 natural sciencesIonExcited state0103 physical sciencesQuadrupoleAtomic physicsNuclear Experiment010306 general physicsNucleonPhysical Review Letters
researchProduct

Studies of pear-shaped nuclei using accelerated radioactive beams

2013

There is strong circumstantial evidence that certain heavy, unstable atomic nuclei are ‘octupole deformed’, that is, distorted into a pear shape. This contrasts with the more prevalent rugby-ball shape of nuclei with reflection-symmetric, quadrupole deformations. The elusive octupole deformed nuclei are of importance for nuclear structure theory, and also in searches for physics beyond the standard model; any measurable electric-dipole moment (a signature of the latter) is expected to be amplified in such nuclei. Here we determine electric octupole transition strengths (a direct measure of octupole correlations) for short-lived isotopes of radon and radium. Coulomb excitation experiments we…

PhysicsMultidisciplinaryIsotopeta114010308 nuclear & particles physicsNuclear TheoryNuclear structureCoulomb excitation[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesNuclear physics0103 physical sciencesAtomic nucleusQuadrupolePhysics::Accelerator PhysicsNeutronNuclidePhysics::Atomic PhysicsAtomic physics010306 general physicsNucleonNuclear Experiment
researchProduct

Do nuclei go pear-shaped? Coulomb excitation of 220Rn and 224Ra at REX-ISOLDE (CERN)

2014

Artículo escrito por muchos autores, sólo se referencian el primero, los autores que firman como Universidad Autónoma de Madrid y el grupo de colaboración en el caso de que aparezca en el artículo

Materials scienceta114PhysicsQC1-999Coulomb excitationREX-ISOLDEFísicaradon[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energyNucleiradiumNuclear magnetic resonancePhysics::Accelerator PhysicsGamma spectroscopypear-shaped nuclei
researchProduct

Enhanced Quadrupole and Octupole Strength in Doubly Magic ^{132}Sn.

2018

International audience; The first $2^+$ and $3^-$ states of the doubly magic nucleus $^{132}$Sn are populated via safe Coulomb excitation employing the recently commissioned HIE-ISOLDE accelerator at CERN in conjunction with the highly efficient MINIBALL array. The $^{132}$Sn ions are accelerated to an energy of 5.49  MeV/nucleon and impinged on a $^{206}$Pb target. Deexciting $\gamma$ rays from the low-lying excited states of the target and the projectile are recorded in coincidence with scattered particles. The reduced transition strengths are determined for the transitions $0_{g.s.}^+ \rightarrow 2_1^+$, $0_{g.s.}^+ \rightarrow 3_1^-$, and $2_1^+ \rightarrow 3_1^-$ in $^{132}$Sn. The res…

nuclear physics[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]ydinfysiikkaNuclear PhysicsPhysical review letters
researchProduct

Microscopic structure of coexisting $0^+$ states in $^{68}$Ni probed via two-neutron transfer

2019

© 2019 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. The structure of low-spin states originating from shape-coexisting configurations in Ni284068 was directly probed via the two-neutron transfer reaction Ni66(t,p)Ni68 in inverse kinematics using a radioactive ion beam on a radioactive target. The direct feeding to the first excited 0+ state was measured for center-of-mass angles 4-16 and amounts to an integral of 4.2(16)% rela…

energy levels and level densitiestransfer reactionsNuclear Physics - Experimentcollective levels[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]ydinfysiikkaNuclear Structure
researchProduct

Single-neutron orbits near Ni-78: Spectroscopy of the N=49 isotope Zn-79

2015

5 pags., 6 figs.

NUCLEIRICH ISOTOPESAstrophysics::High Energy Astrophysical PhenomenaNuclear Theoryeducationgamma-Ray transitionsN = 50 shell closureY-Ray transitions114 Physical sciencesELASTIC-SCATTERINGTransfer reactionsNuclear structureNuclear ExperimentN=50 shell closure
researchProduct