0000000000094817
AUTHOR
F. Wenander
Enhanced Quadrupole and Octupole Strength in Doubly Magic ^{132}Sn.
International audience; The first $2^+$ and $3^-$ states of the doubly magic nucleus $^{132}$Sn are populated via safe Coulomb excitation employing the recently commissioned HIE-ISOLDE accelerator at CERN in conjunction with the highly efficient MINIBALL array. The $^{132}$Sn ions are accelerated to an energy of 5.49 MeV/nucleon and impinged on a $^{206}$Pb target. Deexciting $\gamma$ rays from the low-lying excited states of the target and the projectile are recorded in coincidence with scattered particles. The reduced transition strengths are determined for the transitions $0_{g.s.}^+ \rightarrow 2_1^+$, $0_{g.s.}^+ \rightarrow 3_1^-$, and $2_1^+ \rightarrow 3_1^-$ in $^{132}$Sn. The res…
"Safe" Coulomb excitation of 30Mg.
We report on the first radioactive beam experiment performed at the recently commissioned REX-ISOLDE facility at CERN in conjunction with the highly efficient $\gamma$ -spectrometer MINIBALL. Using $^{30}$Mg ions accelerated to an energy of 2.25MeV/u together with a thin $^{nat}$Ni target, Coulomb excitation of the first excited 2+ states of the projectile and target nuclei well below the Coulomb barrier was observed. From the measured relative de-excitation $\gamma$ -ray yields the B(E2; 0$^{+}_{gs} \rightarrow 2^{+}_{1}$) value of $^{30}$Mg was determined to be 241(31)$e^{2}$fm$^{4}$. Our result is lower than values obtained at projectile fragmenttion facilities using the intermediate-ene…
Evolution of quadrupole collectivity in N=80 isotones toward the Z=64 subshell gap: The B(E2;2+1→0+1) value of 142Sm
It was shown that the evolution of the B(E2; 2+ 1 → 0+ 1 ) values in N = 80 isotones from Te to Nd is affected by the underlying subshell structure. This manifests itself in the observation of the local suppression of the B(E2) value at Z = 58 with respect to the neighboring nuclei 136Ba and 140Nd. To investigate this shell sensitivity toward the Z = 64 subshell gap, the B(E2; 2+ 1 → 0+ 1 ) value of the unstable nucleus 142Sm was measured utilizing the projectile Coulomb excitation technique. The radioactive ion beam (RIB) experiment was performed at the REX-ISOLDE facility at CERN. The B(E2) value of 32 (4) W.u. reflects the impact of the π(1g7/2 2d5/2) subshell closure at Z = 64 with resp…
Shape coexistence in the neutron-deficient even-even Hg182-188 isotopes studied via Coulomb excitation
Coulomb-excitation experiments to study electromagnetic properties of radioactive even-even Hg isotopes were performed with 2.85 MeV/nucleon mercury beams from REX-ISOLDE. Magnitudes and relative signs of the reduced E2 matrix elements that couple the ground state and low-lying excited states in Hg182-188 were extracted. Information on the deformation of the ground and the first excited 0+ states was deduced using the quadrupole sum rules approach. Results show that the ground state is slightly deformed and of oblate nature, while a larger deformation for the excited 0+ state was noted in Hg182,184. The results are compared to beyond mean field and interacting-boson based models and interp…
Structure of low-lying states in 140Sm studied by Coulomb excitation
The electromagnetic structure of 140Sm was studied in a low-energy Coulomb excitation experiment with a radioactive ion beam from the REX-ISOLDE facility at CERN. The 2+ and 4+ states of the ground-state band and a second 2+ state were populated by multistep excitation. The analysis of the differential Coulomb excitation cross sections yielded reduced transition probabilities between all observed states and the spectroscopic quadrupole moment for the 2+ 1 state. The experimental results are compared to large-scale shell model calculations and beyond-mean-field calculations based on the Gogny D1S interaction with a five-dimensional collective Hamiltonian formalism. Simpler geometric and alge…
Microscopic structure of coexisting $0^+$ states in $^{68}$Ni probed via two-neutron transfer
© 2019 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. The structure of low-spin states originating from shape-coexisting configurations in Ni284068 was directly probed via the two-neutron transfer reaction Ni66(t,p)Ni68 in inverse kinematics using a radioactive ion beam on a radioactive target. The direct feeding to the first excited 0+ state was measured for center-of-mass angles 4-16 and amounts to an integral of 4.2(16)% rela…
Shape Coexistence in the Neutron-Deficient Even-EvenHg182−188Isotopes Studied via Coulomb Excitation
Coulomb-excitation experiments to study electromagnetic properties of radioactive even-even Hg isotopes were performed with 2.85 MeV/nucleon mercury beams from REX-ISOLDE. Magnitudes and relative signs of the reduced E2 matrix elements that couple the ground state and low-lying excited states in Hg182-188 were extracted. Information on the deformation of the ground and the first excited 0(+) states was deduced using the quadrupole sum rules approach. Results show that the ground state is slightly deformed and of oblate nature, while a larger deformation for the excited 0(+) state was noted in Hg-182; 184. The results are compared to beyond mean field and interacting-boson based models and i…
Coulomb excitation of re-accelerated 208Rn and 206Po beams
In the present study, B( E2; 2(+)-> 0(+) ) values have been measured in the Rn-208 and Po-206 nuclei through Coulomb excitation of re-accelerated radioactive beams in inverse kinematics at CERN-ISOLDE. The resulting B(E2; 2(+)-> 0(+)) in 208Rn is similar to 0.08 e(2)b(2). These nuclei lie in, or at the boundary of the region where seniority scheme should persist. However, contributions from collective excitations may be present when moving away from the N = 126 shell closure. To date, surprisingly little is known of the transition probabilities between the low-spin states in this region.
Dealing with contaminants in Coulomb excitation of radioactive beams
Abstract Data analysis of the Coulomb excitation experiment of the exotic 206Hg nucleus, recently performed at CERN’s HIE-ISOLDE facility, needs to account for the contribution to target excitation due to the strongly-present beam contaminant 130Xe. In this paper, the contamination subtraction procedure is presented.
Determination of the B(E3, 0+ → 3−)-excitation strength in octupole-correlated nuclei near A ≈224 by the means of Coulomb excitation at REX-ISOLDE
The IS475 collaboration conducted Coulomb-excitation experiments with postaccelerated radioactive 220Rn and 224Ra beams at the REX-ISOLDE facility. The beam particles (Ebeam ≈ 2.83 MeV/u) were Coulomb excited using 60Ni, 114Cd, and 120Sn scattering targets. De-excitation γ-rays were detected employing the Miniball array and scattered particles were detected in a silicon detector. Exploiting the Coulomb-excitation code GOSIA for each nucleus several matrix elements could be obtained from the measured γ-ray yields. The extracted 3−||Ê3||0+ matrix element allows for the conclusion that, while 220Rn represents an octupole vibrational system, 224Ra has already substantial octupole correlations i…
Local suppression of collectivity in the N=80 isotones at the Z=58 subshell closure
Background: Recent data on N=80 isotones have suggested that the proton π(1g7/2) subshell closure at Z=58 has an impact on the properties of low-lying collective states. Purpose: Knowledge of the B(E2;2+1→0+1) value of 140Nd is needed in order to test this conjecture. Method: The unstable, neutron-rich nucleus 140Nd was investigated via projectile Coulomb excitation at the REX-ISOLDE facility with the MINIBALL spectrometer. Results: The B(E2) value of 33(2) W.u. expands the N=80 systematics beyond the Z=58 subshell closure. Conclusions: The measurement demonstrates that the reduced collectivity of 138Ce is a local effect possibly due to the Z=58 subshell closure and requests refined theoret…
Proton dripline studies at ISOLDE: 31Ar and 9C
In this contribution examples of the application of new technologies to disentangle the mechanism of beta-delayed multiparticle emission are given. In particular the mechanism of β-delayed two-proton emission from 31Ar has be resolved and proved to be sequential, a preview of 9C-decay data is discussed. peerReviewed
Crossing the Dripline to 11N Using Elastic Resonance Scattering
The level structure of the unbound nucleus 11N has been studied by 10C+p elastic resonance scattering in inverse geometry with the LISE3 spectrometer at GANIL, using a 10C beam with an energy of 9.0 MeV/u. An additional measurement was done at the A1200 spectrometer at MSU. The excitation function above the 10C+p threshold has been determined up to 5 MeV. A potential-model analysis revealed three resonance states at energies 1.27 (+0.18-0.05) MeV (Gamma=1.44 +-0.2 MeV), 2.01(+0.15-0.05) MeV, (Gamma=0.84 +-$0.2 MeV) and 3.75(+-0.05) MeV, (Gamma=0.60 +-0.05 MeV) with the spin-parity assignments I(pi) =1/2+, 1/2- and 5/2+, respectively. Hence, 11N is shown to have a ground state parity inversi…
Quadrupole deformation of Xe-130 measured in a Coulomb-excitation experiment
Physical review / C 102(5), 054304 (2020). doi:10.1103/PhysRevC.102.054304
The structure of low-lying states in ${}^{140}$Sm studied by Coulomb excitation
The electromagnetic structure of $^{140}$Sm was studied in a low-energy Coulomb excitation experiment with a radioactive ion beam from the REX-ISOLDE facility at CERN. The $2^+$ and $4^+$ states of the ground-state band and a second $2^+$ state were populated by multi-step excitation. The analysis of the differential Coulomb excitation cross sections yielded reduced transition probabilities between all observed states and the spectroscopic quadrupole moment for the $2_1^+$ state. The experimental results are compared to large-scale shell model calculations and beyond-mean-field calculations based on the Gogny D1S interaction with a five-dimensional collective Hamiltonian formalism. Simpler …
Testing refined shell-model interactions in the sd shell: Coulomb excitation of 26Na
Background: Shell-model calculations crucially depend on the residual interaction used to approximate the nucleon-nucleon interaction. Recent improvements to the empirical universal sd interaction (USD) describing nuclei within the sd shell yielded two new interactions—USDA and USDB—causing changes in the theoretical description of these nuclei. Purpose: Transitionmatrix elements between excited states provide an excellent probe to examine the underlying shell structure. These observables provide a stringent test for the newly derived interactions. The nucleus 26Na with 7 valence neutrons and 3 valence protons outside the doubly-magic 16O core is used as a test case. Method: A radioactive b…
97/37 Rb 60 : The Cornerstone of the Region of Deformation around A∼100
Excited states of the neutron-rich nuclei 97,99Rb were populated for the first time using the multistep Coulomb excitation of radioactive beams. Comparisons of the results with particle-rotor model calculations provide clear identification for the ground-state rotational band of 97Rb as being built on the πg9/2 [431] 3/2+ Nilsson-model configuration. The ground-state excitation spectra of the Rb isotopes show a marked distinction between single-particle-like structures below N=60 and rotational bands above. The present study defines the limits of the deformed region around A∼100 and indicates that the deformation of 97Rb is essentially the same as that observed well inside the deformed regi…
Enhanced Quadrupole and Octupole Strength in Doubly Magic Sn132
The first 2+ and 3- states of the doubly magic nucleus Sn132 are populated via safe Coulomb excitation employing the recently commissioned HIE-ISOLDE accelerator at CERN in conjunction with the highly efficient MINIBALL array. The Sn132 ions are accelerated to an energy of 5.49 MeV/nucleon and impinged on a Pb206 target. Deexciting γ rays from the low-lying excited states of the target and the projectile are recorded in coincidence with scattered particles. The reduced transition strengths are determined for the transitions 0g.s.+→21+, 0g.s.+→31-, and 21+→31- in Sn132. The results on these states provide crucial information on cross-shell configurations which are determined within large-sca…
Shapes and Collectivity in Neutron Deficient Even-Mass 188–198Pb Isotopes
Quadrupole and octupole collectivity in the semi-magic nucleus 80,206Hg126
The first low-energy Coulomb-excitation measurement of the radioactive, semi-magic, two proton-hole nucleus 206Hg, was performed at CERN’s recently-commissioned HIE-ISOLDE facility. Two γ rays depopulating low-lying states in 206Hg were observed. From the data, a reduced transition strength B(E2; 2+ 1 → 0+ 1 ) = 4.4(6) W.u was determined, the first such value for an N = 126 nucleus south of 208Pb, which is found to be slightly lower than that predicted by shell-model calculations. In addition, a collective octupole state was identified at an excitation energy of 2705 keV, for which a reduced B(E3) transition probability of 30+10−13 W.u was extracted. These results are crucial for understand…
Shapes and Collectivity in Neutron Deficient Even-Mass 188–198Pb Isotopes
The neutron deficient 188−198Pb isotopes have been studied in a Coulomb excitation measurement employing the Miniball spectrometer and radioactive beams from REX-ISOLDE, CERN. These isotopes are of particular importance as they lie in a transitional region, where the intruding structures, associated with different deformed shapes, come down in energy close to the spherical ground state. For detailed analysis of the Coulomb excitation data, the understanding of the beam composition is essential. peerReviewed
Accelerating Radioactive Ion Beams With REX-ISOLDE
The post accelerator REX‐ISOLDE is installed at the ISOLDE facility at CERN, where a broad variety of radioactive ions can be addressed. Since the end of 2001 beams at the final energy of 2.2 MeV/u are available. REX‐ISOLDE uses a unique system of beam bunching and charge breeding. First a Penning trap accumulates and bunches the ions, which are delivered as a quasi‐continuous beam from the ISOLDE target‐ion‐source, and then an electron beam ion source (EBIS) charge‐breeds them to a mass‐to‐charge ratio below 4.5. This enables a very compact design for the following LINAC, consisting of a 4 rod RFQ, an IH structure and three 7‐gap‐resonators. The later ones allow a variation of the final en…
Do nuclei go pear-shaped? Coulomb excitation of 220Rn and 224Ra at REX-ISOLDE (CERN)
Artículo escrito por muchos autores, sólo se referencian el primero, los autores que firman como Universidad Autónoma de Madrid y el grupo de colaboración en el caso de que aparezca en el artículo
Cluster-transfer reactions with radioactive beams: A spectroscopic tool for neutron-rich nuclei
An exploratory experiment performed at REX-ISOLDE to investigate cluster-transfer reactions with radioactive beams in inverse kinematics is presented. The aim of the experiment was to test the potential of cluster-transfer reactions at the Coulomb barrier as a mechanism to explore the structure of exotic neutron-rich nuclei. The reactions Li7(Rb98,αxn) and Li7(Rb98,txn) were studied through particle-γ coincidence measurements, and the results are presented in terms of the observed excitation energies and spins. Moreover, the reaction mechanism is qualitatively discussed as a transfer of a clusterlike particle within a distorted-wave Born approximation framework. The results indicate that cl…
Prospects for advanced electron cyclotron resonance and electron beam ion source charge breeding methods for EURISOL
International audience; As the most ambitious concept of isotope separation on line (ISOL) facility, EURISOL aims at producing unprecedented intensities of post-accelerated radioactive isotopes. Charge breeding, which transforms the charge state of radioactive beams from 1+ to an n+ charge state prior to postacceleration, is a key technology which has to overcome the following challenges: high charge states for high energies, efficiency, rapidity and purity. On the roadmap to EURISOL, a dedicated R&D is being undertaken to push forward the frontiers of the present state-of-the-art techniques which use either electron cyclotron resonance or electron beam ion sources. We describe here the gui…