0000000000100240

AUTHOR

E Pinat

showing 4 related works from this author

Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and Ic…

2019

[EN] Astrophysical sources of gravitational waves, such as binary neutron star and black hole mergers or core-collapse supernovae, can drive relativistic outflows, giving rise to non-thermal high-energy emission. High-energy neutrinos are signatures of such outflows. The detection of gravitational waves and high-energy neutrinos from common sources could help establish the connection between the dynamics of the progenitor and the properties of the out¿ow. We searched for associated emission of gravitational waves and high-energy neutrinos from astrophysical transients with minimal assumptions using data from Advanced LIGO from its first observing run O1, and data from the ANTARES and IceCub…

Astrofísicacollapse [supernova]neutron star: binaryEVENTS GW150914Gravitació010504 meteorology & atmospheric sciencesneutrino: energy: highAstronomyRAYBinary numberbinary [neutron star]Astrophysics7. Clean energy01 natural sciencesPhysical ChemistryAtomicIceCubeneutrinoParticle and Plasma PhysicsAstronomi astrofysik och kosmologiblack holeAstronomy Astrophysics and CosmologyLIGO010303 astronomy & astrophysicsgravitational waveELECTROMAGNETIC SIGNALSQCQBSettore FIS/01PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HE[PHYS]Physics [physics]Astrophysics::Instrumentation and Methods for Astrophysicsneutrinosgravitational waves; neutrinos520 Astronomie und zugeordnete Wissenschaftenddc:observatorySupernovagravitational wavesastrophysics: densityPhysical SciencesNeutrinoAstrophysics - High Energy Astrophysical Phenomenagravitational waves; neutrinos; Astronomy and Astrophysics; Space and Planetary ScienceAstronomical and Space SciencessignaturePhysical Chemistry (incl. Structural)supernova: collapseAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstronomy & AstrophysicsGravitational wavesemission [gravitational radiation]Ones gravitacionalsCoincident0103 physical sciencesGravitational Waves Neutrinos LIGO Virgo Antares IceCubeNuclearddc:530Neutrinsenergy: high [neutrino]NeutrinosSTFCAstrophysiqueAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesScience & TechnologyANTARESGravitational waveVirgoOrganic ChemistryAstronomyRCUKMolecularAstronomy and AstrophysicsAstronomieAstronomy and Astrophysic530 PhysikLIGOSciences de l'espaceBlack holemessengerNeutron starAntaresPhysics and AstronomySpace and Planetary ScienceFISICA APLICADA:Física::Astronomia i astrofísica [Àrees temàtiques de la UPC]gravitational radiation: emissiondensity [astrophysics]ddc:520[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]EMISSION
researchProduct

Search for High-energy Neutrinos from Gravitational Wave Event GW151226 and Candidate LVT151012 with ANTARES and IceCube

2017

[EN] The Advanced LIGO observatories detected gravitational waves from two binary black hole mergers during their first observation run (O1). We present a high-energy neutrino follow-up search for the second gravitational wave event, GW151226, as well as for gravitational wave candidate LVT151012. We find two and four neutrino candidates detected by IceCube, and one and zero detected by ANTARES, within +/- 500 s around the respective gravitational wave signals, consistent with the expected background rate. None of these neutrino candidates are found to be directionally coincident with GW151226 or LVT151012. We use nondetection to constrain isotropic-equivalent high-energy neutrino emission …

POINT-LIKEGravitational-wave observatoryPhysics and Astronomy (miscellaneous)[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]AstronomyELECTROMAGNETIC COUNTERPARTSastro-ph.HE; astro-ph.HEAstrophysics01 natural sciences7. Clean energylocalizationIceCubeBinary black holeLIGO010303 astronomy & astrophysicsTelescopeGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)QCPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEFollow-upData-acquisition systemobservatoryNeutrino detectorElectromagnetic counterpartsSIMULATIONBlack-hole mergersLigoGamma-ray burstsNeutrinoAstrophysics - High Energy Astrophysical PhenomenaHost galaxiesSimulationGravitational waveBLACK-HOLE MERGERSAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesDATA-ACQUISITION SYSTEMGravitational wavesneutrino: productionGeneral Relativity and Quantum CosmologyBinary black holeOnes gravitacionalsLiGO Observatory0103 physical sciencesNeutrinoGW151226ddc:530NeutrinsNeutrinos010306 general physicsPoint-likeANTARESCosmologiaGravitational wavebackgroundgravitational radiationAstronomy530 PhysikLIGONeutron starGravitational Waves Neutrinos Antares IceCube LIGOAntaresPhysics and Astronomyblack hole: binary13. Climate action:Física::Astronomia i astrofísica [Àrees temàtiques de la UPC]FISICA APLICADAAstronomiaDewey Decimal Classification::500 | Naturwissenschaften::530 | Physik[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]FOLLOW-UPPhysical Review D. Particles and Fields
researchProduct

Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector

2013

We report on results of an all-sky search for high-energy neutrino events interacting within the IceCube neutrino detector conducted between May 2010 and May 2012. The search follows up on the previous detection of two PeV neutrino events, with improved sensitivity and extended energy coverage down to approximately 30 TeV. Twenty-six additional events were observed, substantially more than expected from atmospheric backgrounds. Combined, both searches reject a purely atmospheric origin for the twenty-eight events at the $4\sigma$ level. These twenty-eight events, which include the highest energy neutrinos ever observed, have flavors, directions, and energies inconsistent with those expected…

Particle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)General Science & TechnologyPhysics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesddc:500.2AstrophysicsIceCube Collaboration01 natural sciences7. Clean energyHigh Energy Physics - ExperimentIceCube Neutrino ObservatoryIceCubeHigh Energy Physics - Experiment (hep-ex)MD Multidisciplinary0103 physical sciences010303 astronomy & astrophysicsastro-ph.HEPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Multidisciplinaryhep-ex010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyneutrinosSolar neutrino problemKM3NeTNeutrino detector13. Climate actionastro-ph.COMeasurements of neutrino speedHigh Energy Physics::Experimentddc:500NeutrinoNeutrino astronomyAstrophysics - High Energy Astrophysical PhenomenaphysicsAstrophysics - Cosmology and Nongalactic AstrophysicsScience
researchProduct

Search for correlations between the arrival directions of IceCube neutrino events and ultrahigh-energy cosmic rays detected by the Pierre Auger Obser…

2016

This paper presents the results of different searches for correlations between very high-energy neutrino candidates detected by IceCube and the highest-energy cosmic rays measured by the Pierre Auger Observatory and the Telescope Array. We first consider samples of cascade neutrino events and of high-energy neutrino-induced muon tracks, which provided evidence for a neutrino flux of astrophysical origin, and study their cross-correlation with the ultrahigh-energy cosmic ray (UHECR) samples as a function of angular separation. We also study their possible directional correlations using a likelihood method stacking the neutrino arrival directions and adopting different assumptions on the size…

AstronomyAstrophysicsNeutrino experiments ultra high energy cosmic rays cosmic ray experiments neutrino astronomy.01 natural sciencesASTROPHYSICAL SOURCESultra high energy cosmic raylaw.inventionIceCubeAstronomi astrofysik och kosmologimagnetic [deflection]lawAstronomy Astrophysics and Cosmologycosmic ray experiments; neutrino astronomy; neutrino experiments; ultra high energy cosmic rays; Astronomy and Astrophysics010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsAngular distanceAstrophysics::Instrumentation and Methods for AstrophysicsVHE [neutrino]GALACTIC MAGNETIC-FIELDcascadeAugerobservatorycosmic radiationCascadestackingcosmic ray experi- mentsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearNeutrinoAstrophysics - High Energy Astrophysical Phenomenaphysics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astrophysics::High Energy Astrophysical Phenomenacosmic ray experimentFOS: Physical sciencesCosmic rayultra high energy cosmic raysSURFACE DETECTORTelescopeneutrino astronomyneutrino experiments0103 physical sciencesddc:530Angular resolutionHigh Energy PhysicsPierre Auger ObservatorySPECTRUMMuon010308 nuclear & particles physicsAstronomy and Astrophysicsflux [neutrino]ASTROFÍSICAPhysics and Astronomyangular resolutioncorrelationExperimental High Energy Physicsneutrino experimenttracks [muon]cosmic ray experiments
researchProduct