0000000000101499

AUTHOR

Ilnaz Mannapov

Quantum Online Algorithms with Respect to Space Complexity

Online algorithm is a well-known computational model. We introduce quantum online algorithms and investigate them with respect to a competitive ratio in two points of view: space complexity and advice complexity. We start with exploring a model with restricted memory and show that quantum online algorithms can be better than classical ones (deterministic or randomized) for sublogarithmic space (memory), and they can be better than deterministic online algorithms without restriction for memory. Additionally, we consider polylogarithmic space case and show that in this case, quantum online algorithms can be better than deterministic ones as well.

research product

Quantum versus Classical Online Streaming Algorithms with Logarithmic Size of Memory

We consider online algorithms with respect to the competitive ratio. Here, we investigate quantum and classical one-way automata with non-constant size of memory (streaming algorithms) as a model for online algorithms. We construct problems that can be solved by quantum online streaming algorithms better than by classical ones in a case of logarithmic or sublogarithmic size of memory.

research product

Quantum versus Classical Online Streaming Algorithms with Advice

We consider online algorithms with respect to the competitive ratio. Here, we investigate quantum and classical one-way automata with non-constant size of memory (streaming algorithms) as a model for online algorithms. We construct problems that can be solved by quantum online streaming algorithms better than by classical ones in a case of logarithmic or sublogarithmic size of memory, even if classical online algorithms get advice bits. Furthermore, we show that a quantum online algorithm with a constant number of qubits can be better than any deterministic online algorithm with a constant number of advice bits and unlimited computational power.

research product