0000000000102133
AUTHOR
Maja Resman
Fixed points of diffeomorphisms, singularities of vector fields and epsilon-neighborhoods of their orbits, the thesis
The thesis deals with recognizing diffeomorphisms from fractal properties of discrete orbits, generated by iterations of such diffeomorphisms. The notion of fractal properties of a set refers to the box dimension, the Minkowski content and their appropriate generalizations, or, in wider sense, to the epsilon-neighborhoods of sets, for small, positive values of parameter epsilon. In the first part of the thesis, we consider the relation between the multiplicity of the fixed point of a real-line diffeomorphism, and the asymptotic behavior of the length of the epsilon-neighborhoods of its orbits. We establish the bijective correspondence. At the fixed point, the diffeomorphisms may be differen…
Multiplicity of fixed points and growth of ε-neighborhoods of orbits
We study the relationship between the multiplicity of a fixed point of a function g, and the dependence on epsilon of the length of epsilon-neighborhood of any orbit of g, tending to the fixed point. The relationship between these two notions was discovered before (Elezovic, Zubrinic, Zupanovic) in the differentiable case, and related to the box dimension of the orbit. Here, we generalize these results to non-differentiable cases introducing a new notion of critical Minkowski order. We study the space of functions having a development in a Chebyshev scale and use multiplicity with respect to this space of functions. With the new definition, we recover the relationship between multiplicity o…
The Fatou coordinate for parabolic Dulac germs
We study the class of parabolic Dulac germs of hyperbolic polycycles. For such germs we give a constructive proof of the existence of a unique Fatou coordinate, admitting an asymptotic expansion in the power-iterated log scale.
Linearization of complex hyperbolic Dulac germs
We prove that a hyperbolic Dulac germ with complex coefficients in its expansion is linearizable on a standard quadratic domain and that the linearizing coordinate is again a complex Dulac germ. The proof uses results about normal forms of hyperbolic transseries from another work of the authors.
Normal forms and embeddings for power-log transseries
First return maps in the neighborhood of hyperbolic polycycles have their asymptotic expansion as Dulac series, which are series with power-logarithm monomials. We extend the class of Dulac series to an algebra of power-logarithm transseries. Inside this new algebra, we provide formal normal forms of power-log transseries and a formal embedding theorem. The questions of classifications and of embeddings of germs into flows of vector fields are common problems in dynamical systems. Aside from that, our motivation for this work comes from fractal analysis of orbits of first return maps around hyperbolic polycycles. This is a joint work with Pavao Mardešić, Jean-Philippe Rolin and Vesna Župano…