Z-permutable subgroups of finite groups
Let Z be a complete set of Sylow subgroups of a finite group G, that is, a set composed of a Sylow p-subgroup of G for each p dividing the order of G. A subgroup H of G is called Z-permutable if H permutes with all members of Z. The main goal of this paper is to study the embedding of the Z-permutable subgroups and the influence of Z-permutability on the group structure.