0000000000105882

AUTHOR

A. Kalinko

The role of yttrium and titanium during the development of ODS ferritic steels obtained through the STARS route: TEM and XAS study

Abstract Oxide Dispersion Strengthened Ferritic Steels (ODS FS) are candidate materials for structural components in future fusion reactors. Their high strength and creep resistance at elevated temperatures and their good resistance to neutron radiation damage is obtained through extremely fine microstructures containing a high density of nanometric precipitates, generally yttrium and titanium oxides. This work shows transmission electron microscopy (TEM) and extended X-ray absorption fine structure (EXAFS) characterization of Fe-14Cr-2W-0.3Ti-0.24Y ODS FS obtained by the STARS route (Surface Treatment of gas Atomized powder followed by Reactive Synthesis), an alternative method to obtain O…

research product

Evidence of nickel ions dimerization in NiWO$_4$ and NiWO$_4$-ZnWO$_4$ solid solutions probed by EXAFS spectroscopy and reverse Monte Carlo simulations

G.B. acknowledges the financial support provided by the State Education Development Agency for project No.1.1.1.2/VIAA/3/19/444 (agreement No. 1.1.1.2/16/I/001) realized at the Institute of Solid State Physics, University of Latvia. A.K. and A.K. would like to thank the support of the Latvian Council of Science project No. lzp-2019/1-0071. Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART2.

research product

Thermal disorder and correlation effects in anti-perovskite-type copper nitride

This work has been supported by the Latvian National Research Program IMIS2. The EXAFS experiment has been financed from the European Community's Seventh Framework Programme under grant agreement No. 226716 (Project I-20100098 EC). J.T. also gratefully acknowledges support from the National Science Foundation under the DMREF program Grant No. CHE-1534184.

research product

Local structure relaxation in nanocrystalline Ni1−xO thin films

Abstract Non-stoichiometric nickel oxide (Ni 1 − x O) thin films were prepared by DC magnetron sputtering technique in mixed Ar/O 2 atmosphere and studied by synchrotron radiation Ni K-edge x-ray absorption spectroscopy, x-ray diffraction and scanning electron microscopy. The use of advanced modelling technique, combining classical molecular dynamics with ab initio multiple-scattering extended x-ray absorption fine structure calculations, allowed us to describe the structure relaxation and dynamics in nanocrystallites and to estimate their size and the concentration of nickel vacancies.

research product

Effect of cobalt doping on the local structure and dynamics of multiferroic MnWO4and Mn0.7Co0.3WO4

The local atomic structure and dynamics in multiferroic MnWO4 and Mn0.7Co0.3WO4 have been studied by X-ray absorption spectroscopy at the Co(Mn) K-edge and W L3-edge. The analysis of the first coordination shell of metal ions using single-shell Gaussian approximation and regularization-like method allowed us to determine a distortion of Mn(Co)O6 and WO6 octahedra. It was found that the local environment of Co2+ ions in Mn0.7Co0.3WO4 is close to that in CoWO4, whereas the presence of cobalt ions reduces the distortion of MnO6 octahedra in comparison with pure MnWO4.

research product

Influence of Nb-doping on the local structure and thermoelectric properties of transparent TiO2:Nb thin films

The experiment at HASYLAB/DESY was performed within the project I-20180036 EC. The research leading to this result has been supported by the project CALIPSOplus under the Grant Agreement 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020. Filipe Correia is grateful to the Fundação para a Ciência e Tecnologia (FCT, Portugal) for the Ph.D. Grant SFRH/BD/111720/2015 . Joana Ribeiro is grateful to the Project WinPSC - POCI-01-0247-FEDER-017796, for the research grant, co-funded by the European Regional Development Fund (ERDF) , through the Operational Programme for Competitiveness and Internationalisation (COMPETE 2020), under the PORTUGAL 2020 Partnership Agreement…

research product

Local structure of nanosized tungstates revealed by evolutionary algorithm

Nanostructured tungstates, such as CoWO4 and CuWO4, are very promising catalytic materials, particularly for photocatalytic oxidation of water. The high catalytic activity of tungstate nanoparticles partially is a result of their extremely small sizes, and, consequently, high surface-to-volume ratio. Therefore their properties depend strongly on the atomic structure, which differ significantly from that of the bulk material. X-ray absorption spectroscopy is a powerful technique to address the challenging problem of the local structure determination in nanomaterials. In order to fully exploit the structural information contained in X-ray absorption spectra, in this study we employ a novel ev…

research product

Study of the thermochromic phase transition in CuMo$_{1-x}$W$_x$O$_4$ solid solutions at the W L$_3$-edge by resonant X-ray emission spectroscopy

Polycrystalline CuMo$_{1-x}$W$_x$O$_4$ solid solutions were studied by resonant X-ray emission spectroscopy (RXES) at the W L$_3$-edge to follow a variation of the tungsten local atomic and electronic structures across thermochromic phase transition as a function of sample composition and temperature. The experimental results were interpreted using ab initio calculations. The crystal-field splitting parameter for the 5d(W)-states was obtained from the analysis of the RXES plane and was used to evaluate the coordination of tungsten atoms. Temperature-dependent RXES measurements were successfully employed to determine the hysteretic behaviour of the structural phase transition between the $��…

research product