0000000000105958

AUTHOR

Ralf Weigel

showing 42 related works from this author

Evidence for heterogeneous chlorine activation in the tropical UTLS

2011

Airborne in-situ observations of ClO in the tropics were made during the TROCCINOX (Aracatuba, Brazil, February 2005) and SCOUT-O<sub>3</sub> (Darwin, Australia, November/December 2005) field campaigns. While during most flights significant amounts of ClO (≈10–20 parts per trillion, ppt) were present only in aged stratospheric air, instances of enhanced ClO mixing ratios of up to 40 ppt – significantly exceeding those expected from gas phase chemistry – were observed in air masses of a more tropospheric character. Most of these observations are associated with low temperatures or with the presence of cirrus clouds (often both), suggesting that cirrus ice particles and/or liquid …

Atmospheric Scienceairborne in-situ observationChemistrychemistry.chemical_elementAtmosphärische SpurenstoffeAtmospheric sciencesNitrogenlcsh:QC1-999JGas phaseAerosollcsh:ChemistryTropospherelcsh:QD1-999ddc:550ChlorineLife ScienceCirrusStratospherelcsh:Physics
researchProduct

Comparing airborne and satellite retrievals of cloud optical thickness and particle effective radius using a spectral radiance ratio technique: two c…

2018

Solar radiation reflected by cirrus and deep convective clouds (DCCs) was measured by the Spectral Modular Airborne Radiation Measurement System (SMART) installed on the German High Altitude and Long Range Research Aircraft (HALO) during the Mid-Latitude Cirrus (ML-CIRRUS) and the Aerosol, Cloud, Precipitation, and Radiation Interaction and Dynamic of Convective Clouds System – Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modelling and to the Global Precipitation Measurement (ACRIDICON-CHUVA) campaigns. On particular flights, HALO performed measurements closely collocated with overpasses of the Moderate Resolution Imaging Spectroradiometer (…

Atmospheric Science010504 meteorology & atmospheric sciences0211 other engineering and technologiescirrus02 engineering and technology01 natural sciencesPhysics::Geophysicslcsh:ChemistryNadirRadiative transferconvective cloudsWolkenphysiksatellite retrievalsAstrophysics::Galaxy AstrophysicsPhysics::Atmospheric and Oceanic Physics021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingEffective radiusAlbedolcsh:QC1-999lcsh:QD1-999RadianceEnvironmental scienceCirrusModerate-resolution imaging spectroradiometerspectral radiancecloud optical thicknessGlobal Precipitation Measurementlcsh:PhysicsAtmospheric Chemistry and Physics
researchProduct

Chemical analysis of refractory stratospheric aerosol particles collected within the arctic vortex and inside polar stratospheric clouds

2016

Abstract. Stratospheric aerosol particles with diameters larger than about 10 nm were collected within the arctic vortex during two polar flight campaigns: RECONCILE in winter 2010 and ESSenCe in winter 2011. Impactors were installed on board the aircraft M-55 Geophysica, which was operated from Kiruna, Sweden. Flights were performed at a height of up to 21 km and some of the particle samples were taken within distinct polar stratospheric clouds (PSCs). The chemical composition, size and morphology of refractory particles were analyzed by scanning electron microscopy and energy-dispersive X-ray microanalysis. During ESSenCe no refractory particles with diameters above 500 nm were sampled. I…

Atmospheric ScienceRange (particle radiation)010504 meteorology & atmospheric sciencesChemistry010502 geochemistry & geophysicsmedicine.disease_causeAtmospheric sciences01 natural sciencesSootlcsh:QC1-999AerosolMesospherelcsh:Chemistrylcsh:QD1-99913. Climate actionddc:550medicineParticlePolarStratosphereRefractory (planetary science)lcsh:Physics0105 earth and related environmental sciencesAtmospheric Chemistry and Physics
researchProduct

Reappraising the appropriate calculation of a common meteorological quantity: Potential Temperature

2020

Abstract. The potential temperature is a widely used quantity in atmospheric science since it is conserved for air's adiabatic changes of state. Its definition involves the specific heat capacity of dry air, which is traditionally assumed as constant. However, the literature provides different values of this allegedly constant parameter, which are reviewed and discussed in this study. Furthermore, we derive the potential temperature for a temperature-dependent parameterization of the specific heat capacity of dry air, thus providing a new reference potential temperature with a more rigorous basis. This new reference shows different values and vertical gradients in the upper troposphere and …

Physics::Atmospheric and Oceanic Physics
researchProduct

Comparing Airborne and Satellite Retrievals of Optical and Microphysical Properties of Cirrus and Deep Convective Clouds using a Radiance Ratio Techn…

2017

Abstract. Solar radiation reflected by cirrus and deep convective clouds (DCCs) was measured by the Spectral Modular Airborne Radiation Measurement System (SMART) installed on the German HALO (High Altitude and Long Range Research Aircraft) during the ML-CIRRUS and the ACRIDICON-CHUVA campaigns. In particular flights, HALO performed closely collocated measurements with overpasses of the Moderate Resolution Imaging Spectroradiometer (MODIS) on board of Aqua satellite. Based on the nadir upward radiance, the optical thickness τ and bulk particle effective radius reff of cirrus and DCC are retrieved using a radiance ratio algorithm which considers the cloud thermodynamic phase, the cloud verti…

Effective radius020209 energyCloud top02 engineering and technologyAlbedoAtmospheric sciences0202 electrical engineering electronic engineering information engineeringRadiative transferRadianceNadirEnvironmental scienceCirrusModerate-resolution imaging spectroradiometerAstrophysics::Galaxy AstrophysicsPhysics::Atmospheric and Oceanic PhysicsRemote sensing
researchProduct

In situ observations of new particle formation in the tropical upper troposphere: the role of clouds and the nucleation mechanism

2011

New particle formation (NPF), which generates nucleation mode aerosol, was observed in the tropical Upper Troposphere (UT) and Tropical Tropopause Layer (TTL) by in situ airborne measurements over South America (January–March 2005), Australia (November–December 2005), West Africa (August 2006) and Central America (2004–2007). Particularly intense NPF was found at the bottom of the TTL. Measurements with a set of condensation particle counters (CPCs) with different <i>d</i><sub>p50</sub> (50% lower size detection efficiency diameter or "cut-off diameter") were conducted on board the M-55 <i>Geophysica</i> in the altitude range of 12.0–20.5 km and on board …

Atmospheric Science010504 meteorology & atmospheric sciencesDISPERSION MODEL FLEXPARTaerosolnucleationNucleationclouds010502 geochemistry & geophysicsAtmospheric sciences01 natural sciencestropicsTropospherelcsh:Chemistrynew particle formationddc:550Cloud condensation nucleiLife ScienceStratosphere0105 earth and related environmental sciencesGeophysica[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph][SDU.OCEAN]Sciences of the Universe [physics]/Ocean AtmosphereIce cloudAtmosphärische SpurenstoffeFalconlcsh:QC1-999AerosolJAQUEOUS SULFURIC-ACIDlcsh:QD1-99913. Climate actionClimatologyupper troposphereEnvironmental scienceOutflowAEROSOL NUCLEATIONLOWER STRATOSPHERETropopauselcsh:PhysicsGALACTIC COSMIC-RAYS
researchProduct

The ACRIDICON-CHUVA campaign: Studying tropical deep convective clouds and precipitation over Amazonia using the new German research aircraft HALO

2016

Abstract Between 1 September and 4 October 2014, a combined airborne and ground-based measurement campaign was conducted to study tropical deep convective clouds over the Brazilian Amazon rain forest. The new German research aircraft, High Altitude and Long Range Research Aircraft (HALO), a modified Gulfstream G550, and extensive ground-based instrumentation were deployed in and near Manaus (State of Amazonas). The campaign was part of the German–Brazilian Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems–Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modeling and to the GPM (Global Precipitatio…

ConvectionAtmospheric ScienceACRIDICON–CHUVA010504 meteorology & atmospheric sciencesMeteorologyResearch AircraftCloud computingPrecipitation Formation010502 geochemistry & geophysics01 natural sciencesMess- und Sensortechnik OPPrecipitation (meteorology)tropical deep convective cloudsRemote SensingHaloAmazoniaCloudsRange (aeronautics)ddc:550Radiative transferPrecipitation0105 earth and related environmental sciencesLidarAnthropogenic AerosolsVerkehrsmeteorologiebusiness.industryAmazon rainforestAtmosphärische SpurenstoffeDeep Convective CloudsProjektmanagement Flugexperimente OPAerosolAtmospheric ThermodynamicsEnvironmental sciencebusinessCloud Life CycleGlobal Precipitation Measurement
researchProduct

The realization of autonomous, aircraft-based, real-time aerosol mass spectrometry in the upper troposphere and lower stratosphere

2022

Abstract. We report on the developments that enabled the field deployment of a fully-automated aerosol mass spectrometer, specially designed for high-altitude measurements on unpressurised aircraft. The merits of the two main categories of real-time aerosol mass spectrometry, i.e. (a) single particle laser desorption and ionization, and (b) continuous thermal desorption / electron impact ionization of aerosols, have been integrated into one compact apparatus with the aim to perform in-situ real-time analysis of aerosol chemical composition. The demonstrated instrument, named ERICA (European Research council Instrument for the Chemical composition of Aerosols), operated successfully aboard t…

Atmospheric Science540 Chemistry and allied sciences550aerosolaircraft emission530 Physics530 Physik620 Ingenieurwissenschaften und Maschinenbautroposphere540 Chemiestratosphere620 Engineering and allied operationsautonomy600 Technik600 Technology (Applied sciences)mass spectrometry
researchProduct

Enhancements of the refractory submicron aerosol fraction in the Arctic polar vortex: feature or exception ?

2014

In situ measurements with a four-channel stratospheric condensation particle counter (CPC) were conducted at up to 20 km altitude on board the aircraft M-55 Geophysica from Kiruna, Sweden, in January through March (EUPLEX 2003, RECONCILE 2010) and in December (ESSenCe 2011). During all campaigns air masses from the upper stratosphere and mesosphere were subsiding inside the Arctic winter vortex, thus initializing a transport of refractory aerosol into the lower stratosphere (Θ 3 were generally detected. Up to 8 of these 11 particles per cm3 were found to contain thermo-stable (at 250 °C) residuals with diameters of 10 nm to about 1 μm. Particle mixing ratios (150 mg−1) and fractions of non-…

[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]Atmospheric Science010504 meteorology & atmospheric sciencesAtmospheric sciences010502 geochemistry & geophysics01 natural sciencesCondensation particle counterlcsh:QC1-999AerosolVortexMesospherelcsh:ChemistryAltitudelcsh:QD1-999Polar vortex13. Climate actionClimatology0103 physical sciencesddc:550Environmental science010303 astronomy & astrophysicsStratosphereRefractory (planetary science)lcsh:Physics0105 earth and related environmental sciences
researchProduct

Overview of aerosol properties associated with air masses sampled by the ATR-42 during the EUCAARI campaign (2008)

2013

Abstract. Within the frame of the European Aerosol Cloud Climate and Air Quality Interactions (EUCAARI) project the Météo-France aircraft ATR-42 performed 22 research flights, over central Europe and the North Sea during the intensive observation period in May 2008. For the campaign, the ATR-42 was equipped in order to study aerosol physical, chemical and optical properties, as well as cloud microphysics. During the campaign, continental air masses from Eastern and Western Europe were encountered, along with polar and Scandinavian air masses. For the 22 research flights, retroplume analyses along the flight tracks were performed with FLEXPART in order to classify air masses into five sector…

Atmospheric ScienceParticle number010504 meteorology & atmospheric sciences010501 environmental sciences[SDU.STU.ME]Sciences of the Universe [physics]/Earth Sciences/MeteorologyAtmospheric sciences01 natural sciencesTropospherelcsh:ChemistryChemical compositionAir quality indexComputingMilieux_MISCELLANEOUS0105 earth and related environmental sciences[SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere[PHYS]Physics [physics][PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]Scatteringlcsh:QC1-999AerosolBoundary layerlcsh:QD1-99913. Climate action[SDE]Environmental SciencesParticleEnvironmental sciencelcsh:Physics
researchProduct

Airborne investigation of the aerosols–cloud interactions in the vicinity and within a marine stratocumulus over the North Sea during EUCAARI (2008)

2013

Abstract Within the European Aerosol Cloud Climate and Air Quality Interactions (EUCAARI) project, the Meteo France research aircraft ATR-42 was operated from Rotterdam (Netherlands) airport during May 2008, to perform scientific flights dedicated to the investigation of aerosol–cloud interactions. The objective of this study is to illustrate the impact of cloud processing on the aerosol particle physical and chemical properties. The presented results are retrieved from measurements during flight operation with two consecutive flights, first from Rotterdam to Newcastle (United Kingdom) and subsequently reverse along the same waypoints back to Rotterdam using data measured with compact Time …

Atmospheric Sciencegeographygeography.geographical_feature_categoryMeteorologybusiness.industryCloud computingAtmospheric sciencesInletMarine stratocumulusAerosolLiquid water contentScanning mobility particle sizerEnvironmental scienceParticlebusinessSea salt aerosolGeneral Environmental ScienceAtmospheric Environment
researchProduct

Stratospheric aerosol-Observations, processes, and impact on climate

2016

Interest in stratospheric aerosol and its role in climate have increased over the last decade due to the observed increase in stratospheric aerosol since 2000 and the potential for changes in the sulfur cycle induced by climate change. This review provides an overview about the advances in stratospheric aerosol research since the last comprehensive assessment of stratospheric aerosol was published in 2006. A crucial development since 2006 is the substantial improvement in the agreement between in situ and space-based inferences of stratospheric aerosol properties during volcanically quiescent periods. Furthermore, new measurement systems and techniques, both in situ and space based, have be…

geographygeography.geographical_feature_category010504 meteorology & atmospheric sciencesAir pollutionClimate changeSulfur cyclerespiratory system010502 geochemistry & geophysicsmedicine.disease_causeAtmospheric sciencescomplex mixtures01 natural sciencesAerosolchemistry.chemical_compoundGeophysicschemistryVolcano13. Climate actionAtmospheric chemistryClimatologymedicineEnvironmental scienceClimate model0105 earth and related environmental sciencesCarbonyl sulfideReviews of Geophysics
researchProduct

Aerosol concentrations determine the height of warm rain and ice initiation in convective clouds over the Amazon basin

2017

Abstract. We have investigated how pollution aerosols affect the height above cloud base of rain and ice hydrometeor initiation and the subsequent vertical evolution of cloud droplet size and number concentrations in growing convective cumulus. For this purpose we used in-situ data of hydrometeor size distributions measured with instruments mounted on HALO (High Altitude and Long Range Research Aircraft) during the ACRIDICON-CHUVA campaign over the Amazon during September 2014. The results show that the height of rain initiation by collision and coalescence processes (Dr, in units of meters above cloud base) is linearly correlated with the number concentration of droplets (Nd in cm−3) nucle…

Effective radiusCoalescence (physics)Convection010504 meteorology & atmospheric sciencesMeteorologyNucleationEffects of high altitude on humans010502 geochemistry & geophysicsAtmospheric sciences01 natural sciencesAerosolCloud baseEnvironmental scienceHalo0105 earth and related environmental sciences
researchProduct

Seasonal variations in aerosol particle composition at the puy-de-Dôme research station in France

2011

Detailed investigations of the chemical and microphysical properties of atmospheric aerosol particles were performed at the puy-de-Dôme (pdD) research station (1465 m) in autumn (September and October 2008), winter (February and March 2009), and summer (June 2010) using a compact Time-of-Flight Aerosol Mass Spectrometer (cToF-AMS). Over the three campaigns, the average mass concentrations of the non-refractory submicron particles ranged from 10 μg m<sup>−3</sup> up to 27 μg m<sup>−3</sup>. Highest nitrate and ammonium mass concentrations were measured during the winter and during periods when marine modified airmasses were arriving at the site, wh…

Atmospheric SciencePlanetary boundary layerAtmospheric sciencesMass spectrometrylcsh:QC1-999AerosolTropospherelcsh:Chemistrychemistry.chemical_compoundNitratechemistrylcsh:QD1-999[SDU]Sciences of the Universe [physics][SDE]Environmental SciencesMass spectrumParticleEquivalent potential temperaturelcsh:PhysicsAtmospheric Chemistry and Physics
researchProduct

Sub 500 nm refractory carbonaceous particles in the polar stratosphere

2017

Abstract. Eleven particle samples collected in the polar stratosphere during SOLVE (SAGE III Ozone loss and validation experiment) from January until March 2000 were characterized in detail by high-resolution transmission and scanning electron microscopy (TEM/SEM) combined with energy-dispersive X-ray microanalysis. A total number of 4175 particles (TEM = 3845; SEM = 330) was analyzed from these samples which were collected mostly inside the polar vortex in the altitude range between 17.3 and 19.9 km. By particle volume, all samples are dominated by volatile particles (ammonium sulfates/hydrogen sulfates). By number, approximately 28–82 % of the particles are refractory carbonaceous with si…

Range (particle radiation)OzoneHydrogenAnalytical chemistryMineralogychemistry.chemical_elementMicroanalysischemistry.chemical_compoundchemistryPolar vortexddc:550ParticleCarbonRefractory (planetary science)
researchProduct

Particle shapes and infrared extinction spectra of nitric acid dihydrate crystals: Optical constants of the β-NAD modification

2023

Satellite- and aircraft-based mid-infrared measurements of polar stratospheric clouds (PSCs) have provided spectroscopic evidence for the presence of β-NAT (nitric acid trihydrate) particles. Metastable nitric acid hydrate phases such as α-NAT and α-NAD (nitric acid dihydrate) have been frequently observed in laboratory experiments, but not yet detected as a constituent of PSCs in atmospheric measurements. As for the β-NAD modification, its formation was first observed in X-ray diffraction measurements when the low-temperature α-NAD phase was warmed to a temperature above 210 K. Its infrared spectrum has been reported, but so far no optical constants have been de…

researchProduct

In-Situ observation of New Particle Formation in the upper troposphere/lower stratosphere of the Asian Monsoon Anticyclone

2020

Abstract. During the monsoon season of the year 2017 the airborne StratoClim mission took place in Kathmandu, Nepal with eight mission flights of the M-55 Geophysica in the upper troposphere/lower stratosphere (UT/LS) of the Asian Monsoon Anticyclone (AMA) over northern India, Nepal and Bangladesh. More than hundred events of New Particle Formation (NPF) were observed. In total, more than two hours of flight time were spent under NPF conditions as indicated by the abundant presence of ultrafine aerosols, i.e. with particle diameters dp smaller than 15 nm, which were in-situ detected by means of condensation nuclei counting techniques. Mixing ratios of ultrafine particles (nuf) of up to ~ 50…

[SDU.OCEAN]Sciences of the Universe [physics]/Ocean AtmosphereTroposphere13. Climate actionAnticycloneClimatologyddc:550East Asian MonsoonEnvironmental scienceParticle (ecology)MonsoonStratosphere
researchProduct

New particle formation inside ice clouds: In-situ observations in the tropical tropopause layer of the 2017 Asian Monsoon Anticyclone

2021

Abstract. From 27 July to 10 August 2017 the airborne StratoClim mission took place in Kathmandu, Nepal where eight mission flights were conducted with the M-55 Geophysica up to altitudes of 20 km. New Particle Formation (NPF) was identified by the abundant presence of ultrafine aerosols, with particle diameters dp smaller than 15 nm, which were in-situ detected by means of condensation nuclei counting techniques. NPF fields in clear-skies as well as in the presence of cloud ice particles (dp > 3 µm) were encountered at upper troposphere/lowermost stratosphere (UT/LS) levels and within the Asian Monsoon Anticyclone (AMA). NPF-generated ultrafine particles in elevated concentrations (Nuf)…

education.field_of_studyIce cloud010504 meteorology & atmospheric sciencesPopulation010501 environmental sciencesAtmospheric sciences01 natural sciencesTroposphere13. Climate actionAnticycloneUltrafine particleEnvironmental scienceCloud condensation nucleiEast Asian MonsooneducationStratosphere0105 earth and related environmental sciences
researchProduct

ML-CIRRUS: The Airborne Experiment on Natural Cirrus and Contrail Cirrus with the High-Altitude Long-Range Research Aircraft HALO

2017

Abstract The Midlatitude Cirrus experiment (ML-CIRRUS) deployed the High Altitude and Long Range Research Aircraft (HALO) to obtain new insights into nucleation, life cycle, and climate impact of natural cirrus and aircraft-induced contrail cirrus. Direct observations of cirrus properties and their variability are still incomplete, currently limiting our understanding of the clouds’ impact on climate. Also, dynamical effects on clouds and feedbacks are not adequately represented in today’s weather prediction models. Here, we present the rationale, objectives, and selected scientific highlights of ML-CIRRUS using the G-550 aircraft of the German atmospheric science community. The first combi…

Atmospheric Science010504 meteorology & atmospheric sciencesMeteorologysatellitecontrail cirruscirrus010501 environmental sciences01 natural sciencesmodellingML-CIRRUSRange (aeronautics)ddc:550Wolkenphysik0105 earth and related environmental sciencesLidarFernerkundung der AtmosphäreVerkehrsmeteorologieAtmosphärische SpurenstoffeTrace gasAerosolLidarMiddle latitudesHALOEnvironmental scienceCirrusSatelliteHaloaircraft measurementsBulletin of the American Meteorological Society
researchProduct

New particle formation events measured on board the ATR-42 aircraft during the EUCAARI campaign

2010

Aerosol properties were studied during an intensive airborne measurement campaign that took place at Rotterdam in Netherlands in May 2008 within the framework of the European Aerosol Cloud Climate and Air Quality Interactions project (EUCAARI). The objective of this study is to illustrate seven events of new particle formation (NPF) observed with two Condensation Particle Counters (CPCs) operated on board the ATR-42 research aircraft in airsectors around Rotterdam, and to provide information on the spatial extent of the new particle formation phenomenon based on 1-s resolution measurements of ultra-fine particle (in the size range 3–10 nm diameter, denoted N<sub>3-10</sub> herea…

Atmospheric ScienceRange (particle radiation)Meteorology010504 meteorology & atmospheric sciencesCondensationNucleation010501 environmental sciences01 natural scienceslcsh:QC1-999Aerosollcsh:ChemistryBoundary layerlcsh:QD1-99913. Climate actionEnvironmental scienceParticle[SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/GlaciologyAir quality indexAir masslcsh:Physics0105 earth and related environmental sciencesATMOSPHERIC CHEMISTRY AND PHYSICS, 10, 6721-6735, 2010
researchProduct

Comparing calculated microphysical properties of tropical convective clouds at cloud base with measurements during the ACRIDICON-CHUVA campaign

2016

Abstract. Reliable aircraft measurements of cloud microphysical properties are essential for understanding liquid convective cloud formation. In September 2014, the properties of convective clouds were measured with a Cloud Combination Probe (CCP), a Cloud and Aerosol Spectrometer (CAS-DPOL), and a cloud condensation nuclei (CCN) counter on board the HALO (High Altitude and Long Range Research Aircraft) aircraft during the ACRIDICON-CHUVA campaign over the Amazon region. An intercomparison of the cloud drop size distributions (DSDs) and the cloud water content derived from the different instruments generally shows good agreement within the instrumental uncertainties. The objective of this s…

ConvectionMeteorologyCloud baseEnvironmental scienceAtmospheric sciencesPhysics::Atmospheric and Oceanic PhysicsAstrophysics::Galaxy Astrophysics
researchProduct

Seasonal variations in aerosol particle composition at the puy-de-Dôme research station

2011

Abstract. Detailed investigations of the chemical and microphysical properties of atmospheric aerosol particles were performed at the puy-de-Dôme (pdD) research station (1465 m) in autumn (September and October 2008), winter (February and March 2009), and summer (June 2010) using a Time-of-Flight Aerosol Mass Spectrometer. Over the three campaigns, the average mass concentrations of the non-refractory submicron particles ranged from 10 μg m−3 up to 27 μg m−3. Highest nitrate and ammonium mass concentrations were measured during the winter and during periods when marine modified airmasses were arriving at the site, whereas highest concentrations of organic particles were measured during the …

Dome (geology)Particle compositionClimatologyEnvironmental scienceAtmospheric sciencesAerosol
researchProduct

Comparing parameterized versus measured microphysical properties of tropical convective cloud bases during the ACRIDICON–CHUVA campaign

2017

The objective of this study is to validate parameterizations that were recently developed for satellite retrievals of cloud condensation nuclei supersaturation spectra, NCCN(S), at cloud base alongside more traditional parameterizations connecting NCCN(S) with cloud base updrafts and drop concentrations. This was based on the HALO aircraft measurements during the ACRIDICON–CHUVA campaign over the Amazon region, which took place in September 2014. The properties of convective clouds were measured with a cloud combination probe (CCP), a cloud and aerosol spectrometer (CAS-DPOL), and a CCN counter onboard the HALO aircraft. An intercomparison of the cloud drop size distributions (DSDs) and the…

ConvectionAtmospheric Sciencecould condenstion nuclei010504 meteorology & atmospheric sciencesMeteorologysupersaturationCloud computing010502 geochemistry & geophysicsAtmospheric sciences01 natural scienceslcsh:ChemistryCloud baseCloud condensation nucleicloudWolkenphysikAdiabatic processupdraftAstrophysics::Galaxy AstrophysicsPhysics::Atmospheric and Oceanic Physics0105 earth and related environmental sciencesbusiness.industryDrop (liquid)CASlcsh:QC1-999Aerosollcsh:QD1-999Environmental scienceHalobusinesslcsh:Physics
researchProduct

Aircraft-based observation of meteoric material in lower-stratospheric aerosol particles between 15 and 68° N

2021

We analyse aerosol particle composition measurements from five research missions between 2014 and 2018 to assess the meridional extent of particles containing meteoric material in the upper troposphere and lower stratosphere (UTLS). Measurements from the Jungfraujoch mountaintop site and a low-altitude aircraft mission show that meteoric material is also present within middle- and lower-tropospheric aerosol but within only a very small proportion of particles. For both the UTLS campaigns and the lower- and mid-troposphere observations, the measurements were conducted with single-particle laser ablation mass spectrometers with bipolar-ion detection, which enabled us to measure the chemical c…

Atmospheric ScienceRange (particle radiation)010504 meteorology & atmospheric sciencesaerosol compositionmeteoric particles010502 geochemistry & geophysicsAtmospheric sciences01 natural scienceslcsh:QC1-999Aerosollcsh:ChemistryTroposphereEarth scienceslcsh:QD1-99913. Climate actionPolar vortexddc:550Environmental sciencePotential temperatureaerosol mass spectrometerTropopauseChemical compositionStratospherelcsh:Physics0105 earth and related environmental sciences
researchProduct

The ATAL within the 2017 Asian Monsoon Anticyclone: Microphysical aerosol properties derived from aircraft-borne in situ measurements

2021

Abstract. The Asian summer monsoon is an effective pathway for aerosol particles and precursor substances from the planetary boundary layer over Central, South, and East Asia into the upper troposphere and lower stratosphere. An enhancement of aerosol particles within the Asian monsoon anticyclone (AMA) has been observed by satellites, called the Asian Tropopause Aerosol Layer (ATAL). In this paper we discuss airborne in situ and remote sensing observations of aerosol microphysical properties conducted during the 2017 StratoClim field campaign within the region of the Asian monsoon anticyclone. The aerosol particle measurements aboard the high-altitude research aircraft M55 Geophysica (reac…

TropospherePlanetary boundary layerAnticycloneEast Asian MonsoonEnvironmental scienceParticleTropopauseAtmospheric sciencesStratosphereAerosol
researchProduct

Observations of meteoric material and implications for aerosol nucleation in the winter Arctic lower stratosphere derived from in situ particle measu…

2005

Number concentrations of total and non-volatile aerosol particles with size diameters >0.01 μm as well as particle size distributions (0.4–23 μm diameter) were measured in situ in the Arctic lower stratosphere (10–20.5 km altitude). The measurements were obtained during the campaigns European Polar Stratospheric Cloud and Lee Wave Experiment (EUPLEX) and Envisat-Arctic-Validation (EAV). The campaigns were based in Kiruna, Sweden, and took place from January to March 2003. Measurements were conducted onboard the Russian high-altitude research aircraft Geophysica using the low-pressure Condensation Nucleus Counter COPAS (COndensation PArticle Counter System) and a modified F…

Atmospheric ScienceParticle numberChemistryAtmospheric sciencesCondensation particle counterlcsh:QC1-999VortexAerosollcsh:Chemistrylcsh:QD1-999Polar vortexParticleParticle sizeStratospherelcsh:PhysicsAtmospheric Chemistry and Physics
researchProduct

Chemical analysis of the Asian tropopause aerosol layer (ATAL) with emphasis on secondary aerosol particles using aircraft-based in situ aerosol mass…

2022

Abstract. Aircraft-borne in situ measurements of the chemical aerosol composition were conducted in the Asian tropopause aerosol layer (ATAL) over the Indian subcontinent in the summer of 2017, covering particle sizes below ∼3 µm. We have implemented a recently developed aerosol mass spectrometer, which adopts the laser desorption technique as well as the thermal desorption method for quantitative bulk information (i.e., a modified Aerodyne AMS), aboard the high-altitude research aircraft M-55 Geophysica. The instrument was deployed in July and August 2017 during the StratoClim EU campaign (Stratospheric and upper tropospheric processes for better Climate predictions) over Nepal, India, Ban…

624 Civil engineeringstratospheric aerosolAtmospheric Science624 Ingenieurbau und UmwelttechnikAsian monsoonATALddc:550660 Technische Chemie660 Chemical engineeringAtmospheric Chemistry and Physics
researchProduct

The challenge of simulating the sensitivity of the Amazonian clouds microstructure to cloud condensation nuclei number concentrations

2019

The realistic representation of cloud-aerosol interactions is of primary importance for accurate climate model projections. The investigation of these interactions in strongly contrasting clean and polluted atmospheric conditions in the Amazon area has been one of the motivations for several field observations, including the airborne Aerosol, Cloud, Precipitation, and Radiation Interactions and DynamIcs of CONvective cloud systems – Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modeling and to the GPM (Global Precipitation Measurement) (ACRIDICON-CHUVA) campaign based in Manaus, Brazil in September 2014. In this work we combine in situ …

Atmospheric Science010504 meteorology & atmospheric sciencesaerosolNuclear TheoryCloud computingAtmospheric sciences01 natural scienceslcsh:ChemistryCloud base0103 physical sciencesddc:550Cloud condensation nucleicloudPrecipitationmicrophysicsWolkenphysikNuclear Experiment010303 astronomy & astrophysicsPhysics::Atmospheric and Oceanic PhysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesEffective radiusCondensed Matter::Quantum Gasescloud condenstion nucleiLidarbusiness.industryCondensed Matter::Otherlcsh:QC1-999Aerosollcsh:QD1-999Environmental scienceClimate modelbusinessGlobal Precipitation Measurementlcsh:Physics
researchProduct

Arctic low-level boundary layer clouds: in situ measurements and simulations of mono- and bimodal supercooled droplet size distributions at the top l…

2015

Abstract. Aircraft borne optical in situ size distribution measurements were performed within Arctic boundary layer clouds with a special emphasis on the cloud top layer during the VERtical Distribution of Ice in Arctic clouds (VERDI) campaign in April and May 2012. An instrumented Basler BT-67 research aircraft operated out of Inuvik over the Mackenzie River delta and the Beaufort Sea in the Northwest Territories of Canada. Besides the cloud particle and hydrometeor size spectrometers the aircraft was equipped with instrumentation for aerosol, radiation and other parameters. Inside the cloud, droplet size distributions with monomodal shapes were observed for predominantly liquid-phase Arct…

Atmospheric ScienceMaterials scienceIce crystalsCondensationEvaporationAtmospheric scienceslcsh:QC1-999Aerosollcsh:ChemistryBoundary layerArcticlcsh:QD1-99913. Climate actionLiquid water contentddc:550Particlelcsh:Physics
researchProduct

Long-lived contrails and convective cirrus above the tropical tropopause

2017

Abstract. This study has two objectives: (1) it characterizes contrails at very low temperatures and (2) it discusses convective cirrus in which the contrails occurred. (1) Long-lived contrails and cirrus from overshooting convection are investigated above the tropical tropopause at low temperatures down to −88 °C from measurements with the Russian high-altitude research aircraft M-55 Geophysica, as well as related observations during the SCOUT-O3 field experiment near Darwin, Australia, in 2005. A contrail was observed to persist below ice saturation at low temperatures and low turbulence in the stratosphere for nearly 1 h. The contrail occurred downwind of the decaying convective system H…

ConvectionAtmospheric Science010504 meteorology & atmospheric sciencescirrusSCOUT-O3010502 geochemistry & geophysicsAtmospheric sciences01 natural sciencestropicslcsh:Chemistrytropopauseexhaustddc:550Relative humidityWake turbulenceStratosphere0105 earth and related environmental sciencesGeophysicaLidarInstitut für Physik der Atmosphärecontrailscontraillcsh:QC1-999FalconPlumeAerosolLidarlcsh:QD1-99913. Climate actionstratosphereEnvironmental scienceCirruslcsh:Physics
researchProduct

Chemical analysis of the Asian Tropopause Aerosol Layer (ATAL) with emphasis on secondary aerosol particles using aircraft based in situ aerosol mass…

2022

Abstract. Aircraft borne in-situ measurements of the chemical aerosol composition were conducted in the Asian Tropopause Aerosol layer (ATAL) over the Indian subcontinent in summer 2017 covering particle sizes below 3 µm. We have implemented a recently developed aerosol mass spectrometer, which adopts the laser desorption technique as well as the thermal desorption method for quantitative bulk information (i.e. a modified Aerodyne AMS), aboard the high altitude research aircraft M-55 Geophysica. The instrument was deployed in July and August 2017 during the StratoClim EU campaign (Stratospheric and upper tropospheric processes for better climate predictions) over Nepal, India, Bangladesh, a…

researchProduct

The Asian tropopause aerosol layer within the 2017 monsoon anticyclone: microphysical properties derived from aircraft-borne in situ measurements

2021

The Asian summer monsoon is an effective pathway for aerosol particles and precursors from the planetary boundary layer over Central, South, and East Asia into the upper troposphere and lower stratosphere. An enhancement of aerosol particles within the Asian monsoon anticyclone (AMA), called the Asian tropopause aerosol layer (ATAL), has been observed by satellites. We discuss airborne in situ and remote sensing observations of aerosol microphysical properties conducted during the 2017 StratoClim field campaign within the AMA region. The aerosol particle measurements aboard the high-altitude research aircraft M55 Geophysica (maximum altitude reached of ∼20.5 km) were conducted with a modifi…

Atmospheric SciencePlanetary boundary layerPhysicsQC1-999Atmospheric sciencesAerosolTroposphereChemistryLidarddc:550Potential temperatureParticleEnvironmental scienceTropopauseStratosphereQD1-999Atmospheric Chemistry and Physics
researchProduct

Automatic shape detection of ice crystals

2021

Abstract Clouds have a crucial impact on the energy balance of the Earth-Atmosphere system. They can cool the system by partly reflecting or scattering of the incoming solar radiation (albedo effect); moreover, thermal radiation as emitted from the Earth's surface can be absorbed and partly re-emitted by clouds leading to a warming of the atmosphere (greenhouse effect). The effectiveness of both effects crucially depends on the size and the shape of a cloud's particulate constituents, i.e. liquid water droplets or solid ice crystals. For studying cloud microphysics, in situ measurements on board of aircraft are commonly used. An important class of measurement techniques comprises optical ar…

General Computer ScienceIce crystalsComputer scienceScatteringbusiness.industryLead (sea ice)Cloud computingFilter (signal processing)RadiationTheoretical Computer ScienceThermal radiationModeling and SimulationParticleBiological systembusinessJournal of Computational Science
researchProduct

Aircraft-based observation of meteoric material in lower stratospheric aerosol particles between 15 and 68° N

2019

Abstract. In this paper we analyze aerosol particle composition measurements from five research missions conducted between 2014 and 2018 sampling the upper troposphere and lower stratosphere (UTLS), to assess the meridional extent of particles containing meteoric material. Additional data sets from a ground based study and from a low altitude aircraft mission are used to confirm the existence of meteoric material in lower tropospheric particles. Single particle laser ablation techniques with bipolar ion detection were used to measure the chemical composition of particles in a size range of approximately 150 nm to 3 μm. The five UTLS aircraft missions cover a latitude range from 15 to 68° N,…

010504 meteorology & atmospheric sciences13. Climate action01 natural sciences0105 earth and related environmental sciences
researchProduct

Further evidence for CCN aerosol concentrations determining the height of warm rain and ice initiation in convective clouds over the Amazon basin

2017

We have investigated how aerosols affect the height above cloud base of rain and ice hydrometeor initiation and the subsequent vertical evolution of cloud droplet size and number concentrations in growing convective cumulus. For this purpose we used in situ data of hydrometeor size distributions measured with instruments mounted on HALO aircraft during the ACRIDICON–CHUVA campaign over the Amazon during September 2014. The results show that the height of rain initiation by collision and coalescence processes (Dr, in units of meters above cloud base) is linearly correlated with the number concentration of droplets (Nd in cm−3) nucleated at cloud base (Dr ≈ 5 ⋅ Nd). Additional cloud processes…

ConvectionAtmospheric Science010504 meteorology & atmospheric sciences010502 geochemistry & geophysicsAtmospheric sciences01 natural scienceslcsh:ChemistryCloud basecloudrainWolkenphysikAerosolPhysics::Atmospheric and Oceanic Physicsconvection0105 earth and related environmental sciencesEffective radiusCoalescence (physics)15. Life on landlcsh:QC1-999AerosolAmbient airlcsh:QD1-99913. Climate actionEnvironmental scienceHalolcsh:PhysicsAmazon basinAtmospheric Chemistry and Physics
researchProduct

Impact of cloud processes on aerosol particle properties: results from two ATR-42 flights in an extended stratocumulus cloud layer during the EUCAARI…

2011

Abstract. Within the European Aerosol Cloud Climate and Air Quality Interactions (EUCAARI) project, the Meteo France research aircraft ATR-42 was operated from Rotterdam airport during May 2008, to perform scientific flights dedicated to the investigation of aerosol-cloud interactions. Therein, the objective of this study is to illustrate the impact of cloud processing on the aerosol particles physical and chemical properties. The presented results are retrieved from measurements during a double-flight mission from Rotterdam (Netherlands) to Newcastle (UK) and back using data measured with compact Time of Flight Aerosol Mass Spectrometer (cToF-AMS) and Scanning Mobility Particle Sizer (SMPS…

Meteorologybusiness.industryCloud computingAtmospheric sciencesMarine stratocumulusAerosolchemistry.chemical_compoundchemistryLiquid water contentScanning mobility particle sizerEnvironmental scienceParticleSulfatebusinessSea salt aerosol
researchProduct

Thermodynamic correction of particle concentrations measured by underwing probes on fast-flying aircraft

2016

Particle concentration measurements with underwing probes on aircraft are impacted by air compression upstream of the instrument body as a function of flight velocity. In particular, for fast-flying aircraft the necessity arises to account for compression of the air sample volume. Hence, a correction procedure is needed to invert measured particle number concentrations to ambient conditions that is commonly applicable to different instruments to gain comparable results. In the compression region where the detection of particles occurs (i.e. under factual measurement conditions), pressure and temperature of the air sample are increased compared to ambient (undisturbed) conditions in certain …

lcsh:TA715-787530 PhysicsHALOlcsh:Earthwork. Foundationsddc:550Atmosphärische Spurenstoffecloud probe measurementslcsh:TA170-171530 PhysikParticle air Speedlcsh:Environmental engineering
researchProduct

The realization of autonomous, aircraft-based, real-time aerosol mass spectrometry in the upper troposphere and lower stratosphere (dataset)

2022

Dataset accompanying the journal article titled "The realization of autonomous, aircraft-based, real-time aerosol mass spectrometry in the upper troposphere and lower stratosphere". Preprint: doi.org/10.5194/egusphere-2022-33

researchProduct

Chemical analysis of the Asian tropopause aerosol layer (ATAL) with emphasis on secondary aerosol particles using aircraft-based in situ aerosol mass…

2022

Aircraft-borne in situ measurements of the chemical aerosol composition were conducted in the Asian tropopause aerosol layer (ATAL) over the Indian subcontinent in the summer of 2017, covering particle sizes below ∼3 µm. We have implemented a recently developed aerosol mass spectrometer, which adopts the laser desorption technique as well as the thermal desorption method for quantitative bulk information (i.e., a modified Aerodyne AMS), aboard the high-altitude research aircraft M-55 Geophysica. The instrument was deployed in July and August 2017 during the StratoClim EU campaign (Stratospheric and upper tropospheric processes for better Climate predictions) over Nepal, India, Bangladesh, a…

researchProduct

Chemical analysis of the Asian Tropopause Aerosol Layer (ATAL) with emphasis on secondary aerosol particles using aircraft based in situ aerosol mass…

2022

Aircraft borne in-situ measurements of the chemical aerosol composition were conducted in the Asian Tropopause Aerosol layer (ATAL) over the Indian subcontinent in summer 2017 covering particle sizes below 3 µm. We have implemented a recently developed aerosol mass spectrometer, which adopts the laser desorption technique as well as the thermal desorption method for quantitative bulk information (i.e. a modified Aerodyne AMS), aboard the high altitude research aircraft M-55 Geophysica. The instrument was deployed in July and August 2017 during the StratoClim EU campaign (Stratospheric and upper tropospheric processes for better climate predictions) over Nepal, India, Bangladesh, and t…

researchProduct

The realization of autonomous, aircraft-based, real-time aerosol mass spectrometry in the upper troposphere and lower stratosphere

2022

We report on the developments that enabled the field deployment of a fully automated aerosol mass spectrometer, especially designed for high-altitude measurements on unpressurized aircraft. The merits of the two main categories of real-time aerosol mass spectrometry, i.e. (a) single-particle laser desorption and ionization and (b) continuous thermal desorption and electron impact ionization of aerosols, have been integrated into one compact apparatus with the aim to perform in situ real-time analysis of aerosol chemical composition. The demonstrated instrument, named the ERICA (European Research Council Instrument for Chemical composition of Aerosols), operated successfully aboard the high-…

researchProduct

Aircraft-based observation of meteoric material in lower stratospheric aerosol particles between 15 and 68° N

2020

In this paper we analyze aerosol particle composition measurements from five research missions conducted between 2014 and 2018 sampling the upper troposphere and lower stratosphere (UTLS), to assess the meridional extent of particles containing meteoric material. Additional data sets from a ground based study and from a low altitude aircraft mission are used to confirm the existence of meteoric material in lower tropospheric particles. Single particle laser ablation techniques with bipolar ion detection were used to measure the chemical composition of particles in a size range of approximately 150 nm to 3 μm. The five UTLS aircraft missions cover a latitude range from 15 to 68…

researchProduct