0000000000107902

AUTHOR

Lisa D. Nickerson

Tensor clustering on outer-product of coefficient and component matrices of independent component analysis for reliable functional magnetic resonance imaging data decomposition

Background. Stability of spatial components is frequently used as a post-hoc selection criteria for choosing the dimensionality of an independent component analysis (ICA) of functional magnetic resonance imaging (fMRI) data. Although the stability of the ICA temporal courses differs from that of spatial components, temporal stability has not been considered during dimensionality decisions. New method. The current study aims to (1) develop an algorithm to incorporate temporal course stability into dimensionality selection and (2) test the impact of temporal course on the stability of the ICA decomposition of fMRI data via tensor clustering. Resting state fMRI data were analyzed with two popu…

research product

Discovering hidden brain network responses to naturalistic stimuli via tensor component analysis of multi-subject fMRI data

The study of brain network interactions during naturalistic stimuli facilitates a deeper understanding of human brain function. To estimate large-scale brain networks evoked with naturalistic stimuli, a tensor component analysis (TCA) based framework was used to characterize shared spatio-temporal patterns across subjects in a purely data-driven manner. In this framework, a third-order tensor is constructed from the timeseries extracted from all brain regions from a given parcellation, for all participants, with modes of the tensor corresponding to spatial distribution, time series and participants. TCA then reveals spatially and temporally shared components, i.e., evoked networks with the …

research product

Snowball ICA: A Model Order Free Independent Component Analysis Strategy for Functional Magnetic Resonance Imaging Data

In independent component analysis (ICA), the selection of model order (i.e., number of components to be extracted) has crucial effects on functional magnetic resonance imaging (fMRI) brain network analysis. Model order selection (MOS) algorithms have been used to determine the number of estimated components. However, simulations show that even when the model order equals the number of simulated signal sources, traditional ICA algorithms may misestimate the spatial maps of the signal sources. In principle, increasing model order will consider more potential information in the estimation, and should therefore produce more accurate results. However, this strategy may not work for fMRI because …

research product