0000000000109723

AUTHOR

M. R. Bakhtiari

Fulde-Ferrell-Larkin-Ovchinnikov superfluidity in one-dimensional optical lattices

Spin-polarized attractive Fermi gases in one-dimensional (1D) optical lattices are expected to be remarkably good candidates for the observation of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase. We model these systems with an attractive Hubbard model with population imbalance. By means of the density-matrix renormalization-group method we compute the pairing correlations as well as the static spin and charge structure factors in the whole range from weak to strong coupling. We demonstrate that pairing correlations exhibit quasi-long range order and oscillations at the wave number expected from FFLO theory. However, we also show by numerically computing the mixed spin-charge static struc…

research product

FFLO state in 1-, 2- and 3-dimensional optical lattices combined with a non-uniform background potential

We study the phase diagram of an imbalanced two-component Fermi gas in optical lattices of 1-3 dimensions, considering the possibilities of the FFLO, Sarma/breached pair, BCS and normal states as well as phase separation, at finite and zero temperatures. In particular, phase diagrams with respect to average chemical potential and the chemical potential difference of the two components are considered, because this gives the essential information about the shell structures of phases that will occur in presence of an additional (harmonic) confinement. These phase diagrams in 1, 2 and 3 dimensions show in a striking way the effect of Van Hove singularities on the FFLO state. Although we focus o…

research product