Stable topological textures in a classical 2D Heisenberg model
We show that stable localized topological soliton textures (skyrmions) with $\pi_2$ topological charge $\nu \geq 1$ exist in a classical 2D Heisenberg model of a ferromagnet with uniaxial anisotropy. For this model the soliton exist only if the number of bound magnons exceeds some threshold value $N_{\rm cr}$ depending on $\nu $ and the effective anisotropy constant $K_{\rm eff}$. We define soliton phase diagram as the dependence of threshold energies and bound magnons number on anisotropy constant. The phase boundary lines are monotonous for both $\nu=1$ and $\nu >2$, while the solitons with $\nu=2$ reveal peculiar nonmonotonous behavior, determining the transition regime from low to high …