0000000000113706

AUTHOR

A. Roggero

Characterization of blends of polypropylene with a semirigid liquid-crystal copolyester

Abstract Blends with a liquid-crystal polymers (LCP) as one component show, in general, very interesting properties. Reduction of shear viscosity and improvement of mechanical properties are very remarkable. High melting temperatures and high costs of the LCP limit the use of these blends. A new class of thermotropic LCPs with flexible spaces, with relatively low melting temperatures, can overcome the first problem. In this work, rheological and mechanical properties of blends of polypropylene with low contents of this LCP are presented. Torque during extrusion and viscosity decrease with LCP content. Elastic modulus is remarkably increased when the LCP phase is oriented.

research product

Processing and characterization of blends of fluoroelastomers with semirigid liquid crystal polymers

Fluoroelastomers (FEs) usually have working temperatures above 150°C and a great resistance to aggressive agents such as oils, fuels, aliphatic and aromatic solvents, steam, moderate acid, and basic environments. Liquid crystal polymers (LCPs) can be effective processing aids and reinforcing agents for elastomers. These characteristics are very attractive to lower melt viscosity and to stiffen and strengthen the final product through a simple blending. Among the LCPs, the semirigid LCPs seem the most appealing for blending with flexible thermoplastics (FTs) because their processing temperatures can be arranged to be in the same processing temperature range of FTs and because the presence of…

research product

Morphology and properties of blends of polyethylene with a semiflexible liquid crystalline polymer

Blends of three polyethylene (PE) samples (two HDPE grades and LLDPE) with an experimental sample of a semiflexible liquid crystalline polymer (SBH 1 :1 :2 by Eniricerche) have been prepared in a Brabender compounder. The processing-aid effect of the LCP has been demonstrated by the decreased energy required for extruding the blends, as compared to that needed for neat PE. The thermal properties, as studied by differential scanning calorimetry (DSC), have shown that the two components of the blends are immiscible. However, the dispersed SBH phase has been found to act as a nucleating agent for the crystallization of LLDPE, whereas no such effect was observed for HDPE. This has been taken as…

research product

Melt spinning and mechanical properties of semirigid liquid-crystal copolyesters

Melt-spinning and mechanical properties of fibers of a new class of semirigid thermotropic liquid-crystal polymers are presented. These copolyesters are synthesized from 4-4′-dihydroxybiphenyl (B), 4-hydroxybenzoic acid (H), and flexible units provided by aliphatic diacids. The flexible units depress the melting temperature without strongly depressing the mechanical properties. These liquid-crystal polymers can be easily spun at high draw ratios. Indeed, unlike rigid liquid-crystal polymers, relatively high draw ratios are needed to attain high mechanical strength. Tensile moduli of about 28 GPa and tensile strengths of about 350 MPa are obtained. © 1993 John Wiley & Sons, Inc.

research product

Rheological behavior of a semirigid liquid crystal polymer

The rheological behavior of liquid crystal polymers is still far from completely clarified from both experimental and theoretical points of view. In this paper, the shear flow and the non-isothermal elongation flow behavior of a semi-rigid liquid crystal copolyester is discussed. The viscosity strongly decreases when the test temperature is increased above the crystal-nematic transition temperature; below this temperature the viscosity is very high. The thermal history strongly affects the shear viscosity. The elongational flow behavior depends also on temperature. Above the crystal-nematic transition temperature and the mesophase is easily spinnable, whereas below this temperature, the spi…

research product