0000000000113883
AUTHOR
Hiba Ghazouani
Wetting Patterns Estimation Under Subsurface Drip Irrigation Systems for Different Discharge Rates and Soil Types
Knowledge about the moisture distribution pattern shape and volume of soil wetted by an emitter is the basic need for better subsurface drip irrigation system. The dimensions of the pattern are imperative in selecting the right spacing between emitters and the suitable distance between laterals.
Assessing Field and Laboratory Calibration Protocols for the Diviner 2000 Probe in a Range of Soils with Different Textures
Frequency domain reflectometry (FDR) downhole sensors have been increasingly used for soil moisture field monitoring because they allow measurement, even continuously, along a soil profile. Moreover, they can also be installed with minimal soil disturbance around the access tube. The objectives of the paper were to assess the field and laboratory calibration protocols for a FDR capacitance probe (Diviner 2000) for a range of soils characterized by different particle size distributions and shrink/swell potential and to propose a practical and effective protocol on the basis of undisturbed soil samples, accounting for soil shrinkage/swelling processes characterizing swelling clay soils. The e…
Effects of Saline and Deficit Irrigation on Soil-Plant Water Status and Potato Crop Yield under the Semiarid Climate of Tunisia
Water supplies have been decreasing in several semi-arid regions, and it is therefore necessary to adopt irrigation strategies aimed at maximizing water use efficiency. In this paper, the effects of saline and deficit irrigation on water use efficiency and on potato crop response, based on observations of soil and plant water status, were investigated. Experiments were carried out in Central Tunisia, by monitoring potato crop growth during two seasons in four distinct treatments (T1&ndash
Discussion on "Modeling Approaches for Determining Appropriate Depth of Subsurface Drip Irrigation Tubing in Alfalfa"
The discussed paper deals with the quite interesting topic of design and management of subsurface drip irrigation (SDI), with the aim to identify the appropriate depth at which to install driplines to avoid wetting the soil surface. The study proposes the results of simulations, obtained with the well-known HYDRUS 2D/3D model version 2.x, and considering three different irrigation management strategies applied on alfalfa crop cultivated in two different soil types in Holtville, California.
Using HYDRUS-2D model to assess the optimal drip lateral depth for eggplant crop in a sandy loam soil of central Tunisia
The main objective of the work is to assess the optimal drip lateral depth for Eggplant crop (Solanum melongena L.) irrigated with a drip system in a sandy loam soil by means of field measurements and simulation models. Initially, the performance of Hydrus-2D was assessed based on the comparison between simulated soil water contents (SWC) and the corresponding measured in two plots, in which laterals with co-extruded emitters were laid on the soil surface (drip irrigation, DI-0) and at 20 cm depth (subsurface drip irrigation, SDI-20), respectively. In order to identify the optimal position of the lateral, the results of different scenarios, obtained by changing the installation depth of the…
Assessing Hydrus-2D model to investigate the effects of different on-farm irrigation strategies on potato crop under subsurface drip irrigation
The objective of this paper was to assess the performance of Hydrus-2D model to simulate the effects of different on-farm irrigation strategies applied on potato crop. The ability of the model to simulate the stress coefficient (Ks), obtained as the ratio between actual and maximum transpiration, and to define the productive function of potato crop under the semi-arid conditions of central Tunisia were also evaluated. Experiments were carried out on potato crop under full (FI) and deficit irrigation (DI) and two different water qualities supplied by means of a subsurface drip irrigation system. Results evidenced that the model, despite some discrepancies locally observed, can fairly accurat…
Optimizing subsurface dripline installation depth with Hydrus 2D/3D to improve irrigation water use efficiency in the central Tunisia
The main objective of the work is to optimize drip installation depth for Eggplant crop irrigated with surface or subsurface drip irrigation systems to improve irrigation Water Use Effeciency (WUE), by means of field measurements and simulations carried out with Hydrus-2D model. Initially, a comparison between simulated Soil Water Contents (SWC) and the corresponding measured in two plots, in which laterals with coextruded emitters are laid on the soil surface (T0) and at 20 cm depth (T20), respectively. In order to choose the best position of the lateral, the results of different simulation run, carried out by choosing a deeper installation (T45) depth. Simulated SWC’s resulted fairly clos…