0000000000113928

AUTHOR

Daniel Jünger

Suffix Array Construction on Multi-GPU Systems

Suffix arrays are prevalent data structures being fundamental to a wide range of applications including bioinformatics, data compression, and information retrieval. Therefore, various algorithms for (parallel) suffix array construction both on CPUs and GPUs have been proposed over the years. Although providing significant speedup over their CPU-based counterparts, existing GPU implementations share a common disadvantage: input text sizes are limited by the scarce memory of a single GPU. In this paper, we overcome aforementioned memory limitations by exploiting multi-GPU nodes featuring fast NVLink interconnects. In order to achieve high performance for this communication-intensive task, we …

research product

Gossip

Nowadays, a growing number of servers and workstations feature an increasing number of GPUs. However, slow communication among GPUs can lead to poor application performance. Thus, there is a latent demand for efficient multi-GPU communication primitives on such systems. This paper focuses on the gather, scatter and all-to-all collectives, which are important operations for various algorithms including parallel sorting and distributed hashing. We present two distinct communication strategies (ring-based and flow-oriented) to generate transfer plans for their topology-aware implementation on NVLink-connected multi-GPU systems. We achieve a throughput of up to 526 GB/s for all-to-all and 148 G…

research product

WarpCore: A Library for fast Hash Tables on GPUs

Hash tables are ubiquitous. Properties such as an amortized constant time complexity for insertion and querying as well as a compact memory layout make them versatile associative data structures with manifold applications. The rapidly growing amount of data emerging in many fields motivated the need for accelerated hash tables designed for modern parallel architectures. In this work, we exploit the fast memory interface of modern GPUs together with a parallel hashing scheme tailored to improve global memory access patterns, to design WarpCore -- a versatile library of hash table data structures. Unique device-sided operations allow for building high performance data processing pipelines ent…

research product

MetaCache-GPU: Ultra-Fast Metagenomic Classification

The cost of DNA sequencing has dropped exponentially over the past decade, making genomic data accessible to a growing number of scientists. In bioinformatics, localization of short DNA sequences (reads) within large genomic sequences is commonly facilitated by constructing index data structures which allow for efficient querying of substrings. Recent metagenomic classification pipelines annotate reads with taxonomic labels by analyzing their $k$-mer histograms with respect to a reference genome database. CPU-based index construction is often performed in a preprocessing phase due to the relatively high cost of building irregular data structures such as hash maps. However, the rapidly growi…

research product

WarpDrive: Massively Parallel Hashing on Multi-GPU Nodes

Hash maps are among the most versatile data structures in computer science because of their compact data layout and expected constant time complexity for insertion and querying. However, associated memory access patterns during the probing phase are highly irregular resulting in strongly memory-bound implementations. Massively parallel accelerators such as CUDA-enabled GPUs may overcome this limitation by virtue of their fast video memory featuring almost one TB/s bandwidth in comparison to main memory modules of state-of-the-art CPUs with less than 100 GB/s. Unfortunately, the size of hash maps supported by existing single-GPU hashing implementations is restricted by the limited amount of …

research product

Ultra-Fast Detection of Higher-Order Epistatic Interactions on GPUs

Detecting higher-order epistatic interactions in Genome-Wide Association Studies (GWAS) remains a challenging task in the fields of genetic epidemiology and computer science. A number of algorithms have recently been proposed for epistasis discovery. However, they suffer from a high computational cost since statistical measures have to be evaluated for each possible combination of markers. Hence, many algorithms use additional filtering stages discarding potentially non-interacting markers in order to reduce the overall number of combinations to be examined. Among others, Mutual Information Clustering (MIC) is a common pre-processing filter for grouping markers into partitions using K-Means…

research product