0000000000113930

AUTHOR

Robin Kobus

showing 8 related works from this author

Suffix Array Construction on Multi-GPU Systems

2019

Suffix arrays are prevalent data structures being fundamental to a wide range of applications including bioinformatics, data compression, and information retrieval. Therefore, various algorithms for (parallel) suffix array construction both on CPUs and GPUs have been proposed over the years. Although providing significant speedup over their CPU-based counterparts, existing GPU implementations share a common disadvantage: input text sizes are limited by the scarce memory of a single GPU. In this paper, we overcome aforementioned memory limitations by exploiting multi-GPU nodes featuring fast NVLink interconnects. In order to achieve high performance for this communication-intensive task, we …

Multi-core processorSpeedupComputer scienceSuffix array0102 computer and information sciences02 engineering and technologyParallel computingData structure01 natural scienceslaw.inventionCUDAShared memory010201 computation theory & mathematicslaw0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingSuffixData compressionProceedings of the 28th International Symposium on High-Performance Parallel and Distributed Computing
researchProduct

Accelerating metagenomic read classification on CUDA-enabled GPUs.

2016

Metagenomic sequencing studies are becoming increasingly popular with prominent examples including the sequencing of human microbiomes and diverse environments. A fundamental computational problem in this context is read classification; i.e. the assignment of each read to a taxonomic label. Due to the large number of reads produced by modern high-throughput sequencing technologies and the rapidly increasing number of available reference genomes software tools for fast and accurate metagenomic read classification are urgently needed. We present cuCLARK, a read-level classifier for CUDA-enabled GPUs, based on the fast and accurate classification of metagenomic sequences using reduced k-mers (…

0301 basic medicineTheoretical computer scienceWorkstationGPUsComputer scienceContext (language use)CUDAParallel computingBiochemistryGenomelaw.invention03 medical and health sciencesCUDAUser-Computer Interface0302 clinical medicineStructural BiologylawTaxonomic assignmentHumansMicrobiomeMolecular BiologyInternetXeonApplied MathematicsHigh-Throughput Nucleotide SequencingSequence Analysis DNAExact k-mer matchingComputer Science Applications030104 developmental biologyTitan (supercomputer)Metagenomics030220 oncology & carcinogenesisMetagenomicsDNA microarraySoftwareBMC bioinformatics
researchProduct

Gossip

2019

Nowadays, a growing number of servers and workstations feature an increasing number of GPUs. However, slow communication among GPUs can lead to poor application performance. Thus, there is a latent demand for efficient multi-GPU communication primitives on such systems. This paper focuses on the gather, scatter and all-to-all collectives, which are important operations for various algorithms including parallel sorting and distributed hashing. We present two distinct communication strategies (ring-based and flow-oriented) to generate transfer plans for their topology-aware implementation on NVLink-connected multi-GPU systems. We achieve a throughput of up to 526 GB/s for all-to-all and 148 G…

CUDAComputer scienceGossipDistributed computingTransfer (computing)ServerHash functionOverhead (computing)Throughput (business)Proceedings of the 48th International Conference on Parallel Processing
researchProduct

WarpCore: A Library for fast Hash Tables on GPUs

2020

Hash tables are ubiquitous. Properties such as an amortized constant time complexity for insertion and querying as well as a compact memory layout make them versatile associative data structures with manifold applications. The rapidly growing amount of data emerging in many fields motivated the need for accelerated hash tables designed for modern parallel architectures. In this work, we exploit the fast memory interface of modern GPUs together with a parallel hashing scheme tailored to improve global memory access patterns, to design WarpCore -- a versatile library of hash table data structures. Unique device-sided operations allow for building high performance data processing pipelines ent…

FOS: Computer and information sciencesScheme (programming language)Amortized analysisComputer scienceHash functionParallel computingData structureHash tableCUDAComputer Science - Distributed Parallel and Cluster ComputingServerDistributed Parallel and Cluster Computing (cs.DC)Throughput (business)computercomputer.programming_language2020 IEEE 27th International Conference on High Performance Computing, Data, and Analytics (HiPC)
researchProduct

MetaCache-GPU: Ultra-Fast Metagenomic Classification

2021

The cost of DNA sequencing has dropped exponentially over the past decade, making genomic data accessible to a growing number of scientists. In bioinformatics, localization of short DNA sequences (reads) within large genomic sequences is commonly facilitated by constructing index data structures which allow for efficient querying of substrings. Recent metagenomic classification pipelines annotate reads with taxonomic labels by analyzing their $k$-mer histograms with respect to a reference genome database. CPU-based index construction is often performed in a preprocessing phase due to the relatively high cost of building irregular data structures such as hash maps. However, the rapidly growi…

Genomics (q-bio.GN)FOS: Computer and information sciencesSource codeComputer sciencemedia_common.quotation_subjectHash functionContext (language use)MinHashcomputer.software_genreData structureHash tableComputer Science - Distributed Parallel and Cluster ComputingFOS: Biological sciencesPreprocessorQuantitative Biology - GenomicsDistributed Parallel and Cluster Computing (cs.DC)Data miningcomputermedia_commonReference genome50th International Conference on Parallel Processing
researchProduct

FMapper: Scalable read mapper based on succinct hash index on SunWay TaihuLight

2022

Abstract One of the most important application in bioinformatics is read mapping. With the rapidly increasing number of reads produced by next-generation sequencing (NGS) technology, there is a need for fast and efficient high-throughput read mappers. In this paper, we present FMapper – a highly scalable read mapper on the TaihuLight supercomputer optimized for its fourth-generation ShenWei many-core architecture (SW26010). In order to fully exploit the computational power of the SW26010, we employ dynamic scheduling of tasks, asynchronous I/O and data transfers and implement a vectorized version of the banded Myers algorithm tailored to the 256 bit vector registers of the SW26010. Our perf…

256-bitSpeedupXeonComputer Networks and CommunicationsComputer scienceHash functionParallel computingSW26010SupercomputerTheoretical Computer ScienceArtificial IntelligenceHardware and ArchitectureScalabilitySoftwareSunway TaihuLightJournal of Parallel and Distributed Computing
researchProduct

cuBool: Bit-Parallel Boolean Matrix Factorization on CUDA-Enabled Accelerators

2018

Boolean Matrix Factorization (BMF) is a commonly used technique in the field of unsupervised data analytics. The goal is to decompose a ground truth matrix C into a product of two matrices A and $B$ being either an exact or approximate rank k factorization of C. Both exact and approximate factorization are time-consuming tasks due to their combinatorial complexity. In this paper, we introduce a massively parallel implementation of BMF - namely cuBool - in order to significantly speed up factorization of huge Boolean matrices. Our approach is based on alternately adjusting rows and columns of A and B using thousands of lightweight CUDA threads. The massively parallel manipulation of entries …

SpeedupRank (linear algebra)Computer science02 engineering and technologyParallel computingMatrix decompositionCUDAMatrix (mathematics)Factorization020204 information systemsSingular value decomposition0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingMassively parallelInteger (computer science)2018 IEEE 24th International Conference on Parallel and Distributed Systems (ICPADS)
researchProduct

SPECTR

2018

Modern high throughput sequencing platforms can produce large amounts of short read DNA data at low cost. Error correction is an important but time-consuming initial step when processing this data in order to improve the quality of downstream analyses. In this paper, we present a Scalable Parallel Error CorrecToR designed to improve the throughput of DNA error correction for Illumina reads on various parallel platforms. Our design is based on a k-spectrum approach where a Bloom filter is frequently probed as a key operation and is optimized towards AVX-512-based multi-core CPUs, Xeon Phi many-cores (both KNC and KNL), and heterogeneous compute clusters. A number of architecture-specific opt…

0301 basic medicine03 medical and health sciencesMulti-core processor030104 developmental biologySpeedupXeonComputer scienceData structure alignmentParallel computingError detection and correctionSupercomputerThroughput (business)Xeon PhiProceedings of the 47th International Conference on Parallel Processing
researchProduct