Heading which way? Y-maze chemical assays: not all crustaceans are alike
In a world full of chemicals, many crustaceans rely on elaborate olfactory systems to guide behaviors related to finding food or to assess the presence of conspecifics and predators. We analyzed the responses of the isopod Saduria entomon to a range of stimuli by which the animal is likely to encounter in its natural habitat using a Y-maze bioassay. In order to document the efficiency of the experimental design, the same bioassay was used to test the behavior of the crayfish Procambarus fallax whose ability to track odors is well documented. The crayfish performed well in the Y-maze and were able to locate the source of a food-related odor with high fidelity. The isopod S. entomon reacted i…
A Systematic Nomenclature for the Insect Brain
SummaryDespite the importance of the insect nervous system for functional and developmental neuroscience, descriptions of insect brains have suffered from a lack of uniform nomenclature. Ambiguous definitions of brain regions and fiber bundles have contributed to the variation of names used to describe the same structure. The lack of clearly determined neuropil boundaries has made it difficult to document precise locations of neuronal projections for connectomics study. To address such issues, a consortium of neurobiologists studying arthropod brains, the Insect Brain Name Working Group, has established the present hierarchical nomenclature system, using the brain of Drosophila melanogaster…